簡易檢索 / 詳目顯示

研究生: 江定遠
Ting-Yuan Chiang
論文名稱: IEEE 802.11s MDA在多通道環境下之服務品質分析與研究
Study on IEEE 802.11s MDA Reservation Mechanism for Quality of Service Analysis in Multi-channel for Wireless Mesh Networks
指導教授: 黎碧煌
Bih-Hwang Lee
口試委員: 陳俊良
Jiann-Liang Chen
吳傳嘉
Chwan-Chia Wu
鍾添曜
Tein-Yaw Chung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 78
中文關鍵詞: 802.11sMDA多通道無線網狀區域網路服務品質
外文關鍵詞: 802.11s, MDA, multi-channel, Mesh LAN, QoS
相關次數: 點閱:266下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著網路的快速發展,使用者對於網路的應用也漸漸改變,從一開始的單一資料傳輸演變成多媒體傳輸。但在有限的網路資源下,不同資料類型會有不同的品質要求,而服務品質(Quality of Service, QoS)是一種控制機制,它針對不同使用者或者不同資料類型的資料流採用相應的優先順序,或者是根據應用程式的要求,保證資料流的效能達到一定的水準。
    無線網狀區域網路是由一些支援網狀服務(mesh service)的節點所組成的通訊網路。在IEEE802.11s草案中,除了導入網狀網路架構外,亦加入以預約為基礎的存取機制,稱為MDA(mesh deterministic access)。MDA能讓節點以較少的競爭與碰撞來進行無線存取。而在之前的研究中,有提出可以讓MDA運行在多通道環境下的機制,稱之為Multi-channel MDA(MMDA)。但在MMDA的機制下,並沒有針對不同的資料類型給予不同的傳輸優先順序,所以本論文便是延伸之前的研究,針對MMDA加入服務品質的機制。
    由於MMDA將mesh DTIM interval切割為競爭區間(Contention Period)及資料傳輸區間(Data Transmission Period)。本論文提出了在競爭區間時根據節點內資料類型的組成,來改變節點的後退時間(backoff time),讓資料組成之中擁有較多高優先權資料的節點可以提高預約到MDA Opportunity(MDAOP)的機率。而在資料傳輸區間以期限(deadline)以及權重循環(Weighted Round Robin, WRR)排序來進行佇列傳送的排序。使得高優先權的資料在佇列中能有較高的傳送優先權,以減少資料被丟棄的機會,來提升高優先權資料的傳輸效能。


    With the rapid development of the Internet, the user application for network has changed from a single data transmission into multimedia transmission. However, the Internet resources are limited. Quality of service (QoS) is a control mechanism. It provides different users or different types of data stream use the corresponding priority, or base on the application requirements to ensure the performance of the data stream to reach certain level.
    A wireless mesh LAN is a communications network made up of radio nodes that support Mesh service. In IEEE 802.11s draft, not only the Mesh network topology be introduced, but also a new reservation based MAC access scheme, MDA, be introduced. Nodes that support MDA can access wireless medium with lower collision probability. In a previous study, it was suggested so that MDA can operate on multi-channel environment. Compared with the MDA, MMDA does effectively enhance the system performance. It doesn't offer different data types to have different transmission priorities in MMDA, so we propose to add the quality of service for MMDA based on previous research.
    MMDA divides mesh DTIM interval into Contention Period and Data Transmission Period. This paper propose a scheme, which change the node backoff time according to data type composition in node at Contention Period, the data which is composed of high-priority data in node will have more chance to reservation MDA Opportunity (MDAOP). In this thesis we consider deadline and use Weighted Round Robin (WRR) to sort the queue in Data Transmission Period. Makes high-priority data in the queue have a higher chance to transfer data, to reduce drop ratio, enhance high-priority data transmission performance.

    摘要 iv Abstract v 誌謝 vi 目錄 vii 圖表索引 x 第一章 緒論 1 1.1 簡介 1 1.2 研究動機與目的 2 1.3 章節概要 3 第二章 背景及相關研究 4 2.1 IEEE 802.11E標準簡介 4 2.1.1 EDCA簡介 4 2.2 IEEE 802.11S標準簡介 8 2.2.1 網路拓樸 8 2.2.2 MAC訊框結構 11 2.3 MDA預約機制概述 12 2.3.1 MDA運作機制 13 2.3.2 MDAOP建立流程 13 2.3.3 預約訊框格式 15 2.4相關研究 18 2.4.1 NMST 19 2.4.2 四向交握機制 21 第三章 動態調整佇列排程機制介紹 24 3.1問題描述 24 3.2研究方法 25 3.2.1 系統運作流程簡介 25 3.2.2 訊務分類 26 3.2.3 後退時間變更機制 27 3.2.4 後退時間變更機制之範例 30 3.2.5 佇列排程機制 32 3.2.5 佇列排程機制之範例 34 第四章 系統模擬與結果 38 4.1 模擬環境與參數 38 4.2 效能評估項目 41 4.2.1 產能(throughput) 41 4.2.2 延遲(delay) 42 4.2.3 封包丟棄率(drop ratio) 43 4.3 結果分析與比較 44 4.3.1 總產能之分析與比較 44 4.3.2 訊務別產能分析與比較 45 4.3.3 平均延遲分析與比較 49 4.3.4 訊務別延遲分析與比較 50 4.3.5 平均封包丟棄率分析與比較 54 4.3.6 訊務別封包丟棄率分析與比較 55 4.3.7 系統在各個負載時各訊務之分析與比較 59 4.3.8 權重設定之分析與比較 65 第五章 結論及未來研究 74 5.1 結論 74 5.2 未來研究 75 參考文獻 76

    [1] IEEE Working Group, “Standard for Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Std 802.11, pp. 1-1184, 2007.
    [2] IEEE Working Group, “IEEE Standard for Information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 8: Medium Access Control(MAC) Quality of Service Enhancements,” IEEE std 802.11e , 2005.
    [3] I. F. Akyildiz and W. Xudong, “A Survey on Wireless Mesh Networks,” Communications Magazine, IEEE, Vol. 43, pp. 23-30, 2005.
    [4] R. Bruno and M. Contia E. Gregori, “Mesh networks: Commodity Multihop Ad hoc Networks,” Communications Magazine, IEEE, Vol. 43, pp. 123-131, 2005.
    [5] G. R. Hiertz, D. Denteneer, S. Max, R. Taori, J. Cardona, L. Berlemann, B. Walke, “IEEE 802.11S: THE WLAN MESH STANDARD,” IEEE Wireless Communications, Vol. pp. 104-111, 2010.
    [6] IEEE Working Group, “IEEE Draft STANDARD for Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 10: Mesh Networking,” IEEE Unapproved Draft Std P802.11s/D3.0, March 2009.
    [7] G. R. Hiertz, S. Max, T. Junge, D. Denteneert, and L. Berlemann, “IEEE 802.11s - Mesh Deterministic Access,” in: Proc. Wireless Conference, 2008. EW 2008. 14th European, pp. 1-8, 2008.
    [8] G. R. Hiertz, S. Max, Z. Rui, D. Denteneer, and L. Berlemann, “Principles of IEEE 802.11s,” in: Proc. Computer Communications and Networks, pp. 1002-1007.
    [9] G. R. Hiertz, S. Max, Z. Yunpeng, T. Junge, and D. Denteneer, “IEEE 802.11s MAC Fundamentals,” in: Proc. Mobile Adhoc and Sensor Systems, 2007. MASS 2007. IEEE Internatonal Conference on, pp. 1-8, 2007.
    [10] G. Zilong, L. Bin, H. Xuehua, and H. Lianfen, “Channel Cognitive Multi-channel MAC protocol in Wireless Mesh Network,” in: Proc. Communications, Circuits and Systems, pp. 89-93, 2008.
    [11] C. Cordeiro and K. Challapali, “C-MAC: A Cognitive MAC Protocol for Multi-Channel Wireless Networks,” in: Proc. New Frontiers in Dynamic Spectrum Access Networks, pp. 147-157, 2007.
    [12] J. R. Gallardo, D. Makrakis, and H. T. Mouftah, “MARE: An Efficient Reservation-Based MAC Protocol for IEEE 802.11s Mesh Networks,” in: Proc. Advances in Mesh Networks, pp. 97-102, 2009.
    [13] M. Benveniste and Z. Tao, “Performance Evaluation of a Medium Access Control Protocol for IEEE 802.11s Mesh Networks,” in: Proc. Sarnoff Symposium, 2006 IEEE, pp. 1-5, 2006.
    [14] K. Ghaboosi, M. Latva-aho, and X. Yang, “A Distributed Multi-channel Cognitive MAC Protocol for IEEE 802.11s Wireless Mesh Networks,” in: Proc. Cognitive Radio Oriented Wireless Networks and Communications, pp. 1-8, 2008.
    [15] CHEN, H. C., “Study on IEEE 802.11s MDA Reservation Mechanism for Multi-channel Wireless Mesh Network,” Master dissertation, National Taiwan University of Science and Technology, Taipei, Taiwan, 2010
    [16] N. Lopes, V. Nicolau, M. J., and A. Santos, “Efficiency of PRI and WRR DiffServ Scheduling Mechanisms for Real-Time Services on UMTS Environment.” in: Proc. 2008 New Technologies, Mobility and Security, pp.1–5. 2008.
    [17] T. Balogh, D. Luknarova, and M. Medvecky, “Performance of Round Robin-Based Queue Scheduling Algorithms.” in: Proc. 2010 Third International Conference on Communication Theory, Reliability, and Quality of Service, pp.156–161. 2010.

    QR CODE