簡易檢索 / 詳目顯示

研究生: 蕭伯承
Bo-Cheng Xiao
論文名稱: 應用於不斷電系統之三主動全橋式轉換器之研製
Triple Active Bridge Converter for Uninterruptible Power Supply Application
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 邱煌仁
Huang-Jen Chiu
林景源
Jing-Yuan Lin
謝耀慶
Yao-Ching Hsieh
張佑丞
You-Cheng Zhang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 128
中文關鍵詞: 三主動全橋式轉換器多輸入輸出系統解耦矩陣
外文關鍵詞: Three-active-bridge converter, multiple input multiple output system, Decoupling matrix
相關次數: 點閱:192下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主旨為研究三主動全橋式轉換器,應用於不斷電系統之雙向儲能裝置。首先對三主動全橋式轉換器分析其架構,探討平均功率傳遞之原理,並對其提出電路設計步驟。在閉迴路控制系統中,由於三主動全橋式轉換器為多輸入多輸出系統,傳統方法為透過解耦矩陣,簡化控制系統。而本論文提出解耦矩陣方法用於實務上之問題,並提出新的補償器設計方法。以上提出之理論與模型,皆有模擬加以驗證其正確性。
參考市售之不斷電系統之應用及規格參數,最終實際完成一台輸入電壓為170~280 VDC、雙組輸出電壓為360 VDC以及輸出功率
5 kW之三主動全橋式轉換器。採用單相移控制,來控制傳遞功率大小。實作部分透過數位訊號控制器來實現閉迴路控制。經由實驗結果顯示轉換器在不同輸入電壓之條件下,皆可以滿足電路之功能,於四點的(25%,50%,75%,100%)負載下之效率均在90%以上。


The main purpose of this thesis is to study the three active bridge converter, which is applied to the bidirectional energy storage device of the uninterruptible power system. First, the structure of the three active bridge converter is analyzed, and the principle of average power delivery is discussed. In the closed-loop control system, since the three active full bridge converter is a multiple-input multiple-output system. The traditional method is to simplify the control system through a decoupling matrix. This thesis presents the practical problems of this method and proposes a new compensator design method. The theories and models proposed above have been simulated and implemented to verify their correctness.
Considering the specifications of the uninterruptible power system, a DC-DC three active bridge converter was finally completed. With an input voltage of 170~280 Vdc, a dual output voltage of 360 Vdc, and output power of 5 kW. The power stage includes three sets of full-bridge switches, and the transmission power is controlled by the phase shift angle of the switch signal. The implementation realizes closed loop control through a digital signal controller. The experimental results show that the converter can meet the function of the circuit under different input voltage conditions, and the efficiency is above 90% under different load.

摘要 Abstract 誌謝 目錄 圖索引 表索引 第一章 緒論 1.1 研究動機與目的 1.2 論文內容架構 第二章 主動橋式轉換器原理與動作分析 2.1 雙主動全橋式轉換器 2.1.1 動作區間分析 2.1.2 功率函數推導 2.2 三主動全橋式轉換器 2.2.1 TAB電流方程式推導 2.2.2 TAB平均功率傳遞 2.3 零電壓切換條件 第三章 小信號模型分析與補償方式 3.1 小信號模型分析 3.1.1 廣義平均建模法 3.1.2 小信號模型推導 3.2 閉迴路補償方式 3.2.1 解耦矩陣法 3.2.2 直接補償法 3.2.3 閉迴路系統趨勢分析 3.2.4 閉迴路輸出阻抗轉移函數推導 3.2.5 輸出電壓漣波改善 第四章 系統研製 4.1 電路規格 4.2 電路參數設計 4.2.1 觀察電流有效值趨勢 4.2.2 參數設計步驟 4.3 元件選用與設計 4.3.1 隔離變壓器設計 4.3.2 電感設計 4.3.3 功率開關元件設計 4.4 周邊電路設計 4.4.1 電壓取樣電路 4.4.2 過電流保護 4.5 補償器設計 4.6 數位控制設計 4.6.1 數位處理器模組 4.6.2 韌體流程規劃 第五章 模擬與實驗結果 5.1 電路模擬結果 5.1.1 閉迴路系統 5.1.2 輸出電壓漣波改善 5.2 實測波形與數據 5.3 效率量測與損耗分析 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

[1] R. M. Schupbach, J. C. Balda, M. Zolot, and B. Kramer, “Design methodology of a combined battery-ultracapacitor energy storage unit for vehicle power management,” in Proc. IEEE Power Electron. Specialists Conf., Jun. 2003, vol. 1, pp. 88–93.
[2] J. P. Barton and D. G. Infield, “Energy storage and its use with intermittent renewable energy,” IEEE Trans. Energy Convers., vol. 19, no. 6, pp. 441–448, Jun. 2004.
[3] Sha, Deshang, and Guo Xu. “ High-Frequency Isolated Bidirectional Dual Active Bridge DC–DC Converters with Wide Voltage Gain, ” Springer, 2018.
[4] George, Kenny. “Design and Control of a Bidirectional Dual Active Bridge DC-DC Converter to Interface Solar, Battery Storage, and Grid-Tied Inverters, ” 2015.
[5] Zhao, Chuanhong, Simon D. Round, and Johann W. Kolar. “An isolated three-port bidirectional DC-DC converter with decoupled power flow management,” IEEE transactions on power electronics 23.5 (2008): 2443-2453.
[6] R. W. A. A. De Doncker, D. M. Divan, and M. H. Kheraluwala, “A three-phase soft-switched high-power-density DC/DC converter for high-power applications,” IEEE Trans. Ind. Appl., vol. 27, no. 1, pp. 63–73, Jan. 1991.
[7] Purgat, Pavel, et al. "Zero voltage switching criteria of triple active bridge converter." IEEE Transactions on Power Electronics 36.5 (2020): 5425-5439
[8] Biswas, Ishita, Debaprasad Kastha, and Prabodh Bajpai. "Tab based multiport converter with optimized transformer rms current and improved ZVS range for dc microgrid applications." IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society. Vol. 1. IEEE, 2019.
[9] Okutani, Shota, Pin-Yu Huang, and Yuichi Kado. "Generalized Average Model of Triple Active Bridge Converter." 2019 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE.
[10] Sanders, Seth R., et al. "Generalized averaging method for power conversion circuits." IEEE Transactions on power Electronics 6.2 (1991): 251-259.
[11] V. Vorperian, “Simplified analysis of PWM converters using model of PWM switch. II. Discontinuous conduction mode,” IEEE Trans. Aerosp. Electron. Syst., vol. 26, no. 3, pp. 497–505, May 1990.
[12] H. Qin and J. W. Kimball, "Generalized average modeling of dual active bridge dc-dc converter, " IEEE Trans. Power Electron., vol. 27, no. 4, Apr. 2012.
[13] J. A. Mueller and J. Kimball, "An improved generalized average model of dc–dc dual active bridge converters, " IEEE Trans. Power Electron., vol. 33, no. 11, Nov. 2018.
[14] S. Bacha, I. Munteanu, and A. I. Bratcu, "Power electronic converters modeling and control, " in Advanced Textbooks in Control and Signal Processing, vol. 454. London, U.K.: Springer, 2014.
[15] Bacha, Seddik, Iulian Munteanu, and Antoneta Iuliana Bratcu. "Power electronic converters modeling and control." Advanced textbooks in control and signal processing 454 (2014): 454.
[16] Stein, Elias M., and Rami Shakarchi. Fourier analysis: an introduction. Vol. 1. Princeton University Press, 2011.
[17] W. L. Luyben, “Distillation decoupling,” AIChE, vol. 16, no. 2, pp. 198–203, Mar. 1970.
[18] Liu, Ran, et al. "Decoupled TAB converter with energy storage system for HVDC power system of more electric aircraft." The Journal of Engineering 2018.13 (2018): 593-602.
[19] Nishimoto, Koya, et al. "Decoupling power flow control system in triple active bridge converter rated at 400 V, 10 kW, and 20 kHz." 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). IEEE, 2017.
[20]Yu, Yue, et al. "Power flow control of a triple active bridge DC-DC converter using GaN power devices for a low-voltage DC power distribution system." 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017-ECCE Asia). IEEE, 2017.
[21]Cha, Hanju, Trung-Kien Vu, and Jae-Eon Kim. "Design and control of Proportional-Resonant controller based Photovoltaic power conditioning system." 2009 IEEE Energy Conversion Congress and Exposition. IEEE, 2009.
[22]Colonel Wm. T. McLyman, Transformer and InductorDesign Handbook Fourth Edition, Taylor and Francis Group, LLC, 2011.
[23]Texas Instruments Inc., "TMS320x2803x Piccolo Technical Reference Manual, " Datasheet, December 2018.
[24] Grabarek, Maciej, Marcin Parchomiuk, and Ryszard Strzelecki. "Conjugated control of triple active bridge converter with common HFT." 2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG). IEEE, 2017.

無法下載圖示 全文公開日期 2026/08/06 (校內網路)
全文公開日期 2026/08/06 (校外網路)
全文公開日期 2026/08/06 (國家圖書館:臺灣博碩士論文系統)
QR CODE