簡易檢索 / 詳目顯示

研究生: Jittrakorn Udomsin
Jittrakorn Udomsin
論文名稱: 以環境友善方法製備特殊潤濕性高分子複合材料與其在高效油水乳化液分離研究
Constructing superwetting polymer composites through eco-friendly methods for highly efficient oil/water emulsions separations
指導教授: 胡蒨傑
Chien-Chieh Hu
王志逢
Chih-Feng Wang
口試委員: 賴君義
Juin-Yih Lai
胡蒨傑
Chien-Chieh Hu
洪維松
Wei-Song Hung
王志逢
Chih-Feng Wang
劉英麟
Ying-Ling Liu
李魁然
Li Kuiran
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 172
外文關鍵詞: Membrane, Emulsion separation
相關次數: 點閱:261下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 i Abstract iii Acknowledgement v Table of Contents vi List of Figures xi List of Tables xvi List of Abbreviations xvi Chapter 1: General Introduction 1 1.1 Background 1 1.2 Research Objectives 1 1.2.1 Fabrication of metal-phenolic modified cotton for emulsion separation and dye absorption 2 1.2.2 Fabrication of sodium lignosulfonate modified CNT for oil-in-water emulsion separation 2 1.2.3 Fabrication of polystyrene sulfonate modified CNT for oil-in-water emulsion separation and solar evaporation 3 1.3 Dissertation overview 3 Chapter 2: Review of Related Knowledge and Research 6 2.1 Introduction of surface wettability 6 2.1.1 Classification of surface wettability 9 2.1.2 Contact angle measurement 12 2.1.3 Superhydrophilic property 17 2.1.4 Superhydrophobic property 20 2.1.5 Natural inspiration on superwetting property 23 2.2 Introduction of emulsion separation 25 2.2.1 What is emulsion? 25 2.2.2 Membrane fabrication techniques 27 2.2.3 Surface modification membranes 29 2.2.4 Mechanism of emulsion separation membrane 32 2.2.5 Membrane fouling 35 2.2.6 Superwetting membrane for emulsion separation 36 2.2.7 Advance materials and nanotechnologies 37 2.2.8 Biopolymer and environmentally friendly materials 39 2.3 Solar evaporation 40 2.3.1. Solar evaporation principle and materials 40 2.3.2. Approach of current research 41 References 42 Chapter 3: An eco-friendly method to prepare superwetting composites by modifying cotton with TA/FeIII/PDDA coatings for highly effective separations of emulsions 53 3.1 Abstract 53 3.2 Introduction 54 3.3 Experimental section 56 3.3.1 Materials 56 3.3.2 Preparation of TA/FeIII/PDDA@cotton 57 3.3.3 Oil/water mixtures preparation and separation 57 3.3.4 Oil-in-water emulsions preparation and separation 57 3.3.5 Dye adsorption tests 58 3.3.6 Instruments and characterization 59 3.4 Results and discussion 59 3.4.1 Preparation and characterization of TA/FeIII/PDDA@cotton 59 3.4.2 Wettability of TA/FeIII/PDDA@cotton 62 3.4.3 Oil/water separation potential and reusability of TA/FeIII/PDDA@cotton 64 3.4.4 Emulsion separation potential and reusability of TA/FeIII/PDDA@cotton 68 3.4.5 Dye solutions and the dye spiked emulsion separations 73 3.5 Conclusion 76 3.6 Acknowledgement 76 3.7 References 76 Chapter 4: Constructing Superwetting Membranes by Sodium Lignosulfonate-Modified Carbon Nanotube for Highly Efficient Crude Oil-in-Water Emulsions Separations 83 4.1 Abstract 83 4.2 Introduction 84 4.3 Experimental section 87 4.3.1 Materials 87 4.3.2 Preparation of CNT and SLS@CNT membranes 87 4.3.3 Preparation of oil-in-water emulsions 88 4.3.4 Oil-in-water emulsion separation 88 4.3.5 Instruments and characterizations 89 4.4 Results and discussion 89 4.4.1 Preparation and morphological analysis of membranes 89 4.4.2 Surface chemical compositions of the membranes 93 4.4.3 Wettability of the membranes 97 4.4.4 Antifouling and self-cleaning properties of the membranes 101 4.4.5 Emulsion separation performance of the SLS@CNT membrane 104 4.4.6 Emulsion separation mechanism 109 4.5 Conclusion 112 4.6 Acknowledgement 113 4.7 References 113 Chapter 5: PSS@CNT membrane 118 5.1 Abstract 118 5.2 Introduction 119 5.3 Experimental section 121 5.3.1 Materials 121 5.3.2 Fabrication of PSS@CNT membrane 121 5.3.3 Preparation of oil-in-water emulsion 122 5.3.4 Emulsion separation 123 5.3.5 Solar evaporation 124 5.3.6 Characterizations 125 5.4 Results and discussion 126 5.4.1 Surface morphology and chemical composition of PSS@CNT membrane 126 5.4.2 Surface chemical composition 128 5.4.3 Wettability and antifouling property 130 5.4.4 Bending test 131 5.4.5 Oil-in-water emulsion separation test 131 5.4.6 Solar evaporation 133 5.4.7 Oil-in-seawater evaporation 139 5.5 Conclusion 143 5.6 References 143 Chapter 6: Conclusion 147

    Chapter 2
    [1] T. Young, III. An essay on the cohesion of fluids, Philos. Trans. R. Soc. Lond. 95 (1805) 65-87.
    [2] R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. Res. 28, no. 8 (1936) 988-994.
    [3] A. B. D. Cassie, and S. Baxter, Wettability of porous surfaces, J. Chem. Soc., Faraday trans. 40 (1944) 546-551.
    [4] E. A. Vogler, "Structure and reactivity of water at biomaterial surfaces." Adv. Colloid Interface Sci. 74, no. 1-3 (1998) 69-117.
    [5] W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta 202 (1997) 1-8.
    [6] X. Leng, L. Sun, Y. Long, Y. Lu, Bioinspired superwetting materials for water manipulation, Droplet 1, no. 2 (2022) 139-169.
    [7] K. Y. Law, Contact angle hysteresis on smooth/flat and rough surfaces. Interpretation, mechanism, and origin, Acc. Mater. Res. 3, no. 1 (2021) 1-7.
    [8] Y. Jiang, J. Lian, Z. Jiang, Y. Li, C. Wen, Thermodynamic analysis on wetting states and wetting state transitions of rough surfaces, Adv. Colloid Interface Sci. 278 (2020) 102136.
    [9] X. Wang, C. Fu, C. Zhang, Z. Qiu, B. Wang, A comprehensive review of wetting transition mechanism on the surfaces of microstructures from theory and testing methods, Materials 15, no. 14 (2022) 4747.
    [10] Y. Tian, B. Su, L. Jiang, Interfacial material system exhibiting superwettability, Adv. Mater. 26, no. 40 (2014) 6872-6897.
    [11] C. H. Kung, P. K. Sow, B. Zahiri, W. Mérida. "Assessment and interpretation of surface wettability based on sessile droplet contact angle measurement: challenges and opportunities." Adv. Mater. Interfaces 6, no. 18 (2019) 1900839.
    [12] R. Akbari, C. Antonini, Contact angle measurements: From existing methods to an open-source tool, Adv. Colloid Interface Sci. 294 (2021) 102470.
    [13] J. Zimmermann, S. Seeger, F. A. Reifler, Water shedding angle: a new technique to evaluate the water-repellent properties of superhydrophobic surfaces, Text. Res. J. 79, no. 17 (2009) 1565-1570.
    [14] T. Huhtamäki, X. Tian, J. T. Korhonen, R. H. Ras. "Surface-wetting characterization using contact-angle measurements." Nat. Protoc. 13, no. 7 (2018) 1521-1538.
    [15] H. B. Eral, D. J. C. M. ’t Mannetje, J. M. Oh, Contact angle hysteresis: a review of fundamentals and applications, Colloid Polym. Sci. 291 (2013) 247-260.
    [16] R. K. Annavarapu, S. Kim, M. Wang, A. J. Hart, H. Sojoudi, Explaining evaporation-triggered wetting transition using local force balance model and contact line-fraction, Sci. Rep. 9, no. 1 (2019) 405.
    [17] A. Jarray, H. Wijshoff, J. A. Luiken, W. K. den Otter, Systematic approach for wettability prediction using molecular dynamics simulations, Soft matter 16, no. 17 (2020) 4299-4310.
    [18] Y. Li, X. Li, W. Sun, T. Liu, Mechanism study on shape evolution and wetting transition of droplets during evaporation on superhydrophobic surfaces, Colloids Surf. A: Physicochem. Eng. Asp. 518 (2017) 283-294.
    [19] P. P. Goodwyn, Y. Maezono, N. Hosoda, K. Fujisaki, Waterproof and translucent wings at the same time: problems and solutions in butterflies, Sci. Nat. 96 (2009) 781-787.
    [20] X. Q. Feng, X. Gao, Z. Wu, L. Jiang, Q. S. Zheng, Superior water repellency of water strider legs with hierarchical structures: experiments and analysis, Langmuir 23, no. 9 (2007) 4892-4896.
    [21] Y. Lu, L. Yu, Z. Zhang, S. Wu, G. Li, P. Wu, Y. Hu, J. Li, J. Chu, D. Wu, Biomimetic surfaces with anisotropic sliding wetting by energy-modulation femtosecond laser irradiation for enhanced water collection, RSC Adv. 7, no. 18 (2017) 11170-11179.
    [22] S. G. Lee, H. S. Lim, D. Yun Lee, D. Kwak, K. Cho, Tunable anisotropic wettability of rice leaf‐like wavy surfaces, Adv. Funct. Mater. 23, no. 5 (2013) 547-553.
    [23] M. Kumar, R. Bhardwaj, Wetting characteristics of Colocasia esculenta (Taro) leaf and a bioinspired surface thereof, Sci. Rep. 10, no. 1 (2020) 935.
    [24] X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B.Yang, L. Jiang, The dry‐style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography, Adv. Mater. 19, no. 17 (2007) 2213-2217.
    [25] A. Y. Stark, S. Subarajan, D. Jain, P. H. Niewiarowski, A. Dhinojwala, Superhydrophobicity of the gecko toe pad: biological optimization versus laboratory maximization, Philos. trans., Math. phys. eng. Sci. 374, no. 2073 (2016) 20160184.
    [26] D. Jain, A. Y. Stark, P. H. Niewiarowski, T. Miyoshi, A. Dhinojwala, NMR spectroscopy reveals the presence and association of lipids and keratin in adhesive gecko setae, Sci. Rep. 5, no. 1 (2015) 9594.
    [27] W. Barthlott, T. Schimmel, S. Wiersch, K. Koch, M. Brede, M. Barczewski, S. Walheim, The Salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water, Adv. Mater. 22, no. 21 (2010) 2325-2328.
    [28] O. Tricinci, T. Terencio, B. Mazzolai, N. M. Pugno, F. Greco, V. Mattoli, 3D micropatterned surface inspired by Salvinia molesta via direct laser lithography, ACS Appl. Mater. Interfaces 7, no. 46 (2015) 25560-25567.
    [29] M. S. Selim, Z. Hao, P. Mo, Y. Jiang, G. Tan, Superhydrophobic self-cleaning surfaces in nature, Nanoarchitectonics (2020) 26-37.
    [30] Y. Cai, Q. Lu, X. Guo, S. Wang, J. Qiao, L. Jiang, Salt‐tolerant superoleophobicity on alginate gel surfaces inspired by seaweed (saccharina japonica), Adv. Mater. 27, no. 28 (2015) 4162-4168.
    [31] Y. Cai, L. Lin, Z. Xue, M. Liu, S. Wang, L. Jiang, Filefish‐inspired surface design for anisotropic underwater oleophobicity, Adv. Funct. Mater. 24, no. 6 (2014) 809-816.
    [32] J. Yong, F. Chen, Q. Yang, Z. Jiang, X. Hou, A review of femtosecond‐laser‐induced underwater superoleophobic surfaces, Adv. Mater. Interfaces 5, no. 7 (2018) 1701370.
    [33] J. Wu, Y. Xu, T. Dabros, H. Hamza, Development of a method for measurement of relative solubility of nonionic surfactants, Colloids Surf. A: Physicochem. Eng. Asp. 232, no. 2-3 (2004) 229-237.
    [34] Y. Tang, Y. Lin, D. M. Ford, X. Qian, M. R. Cervellere, P. C. Millett, X. Wang, A review on models and simulations of membrane formation via phase inversion processes, J. Membr. Sci. 640 (2021) 119810.
    [35] M. Fathi, Á. Martín, D. J. McClements, Nanoencapsulation of food ingredients using carbohydrate based delivery systems, Trends Food Sci. Technol. 39, no. 1 (2014) 18-39.
    [36] F. Zhang, J. B. Fan, S. Wang, Interfacial polymerization: from chemistry to functional materials, Angew. Chem., Int. Ed. Engl. 59, no. 49 (2020) 21840-21856.
    [37] X. Wu, F. Mu, H. Zhao, Recent progress in the synthesis of graphene/CNT composites and the energy-related applications, J. Mater. Sci. Technol. 55 (2020) 16-34.
    [38] M. Girones, , I. J. Akbarsyah, W. Nijdam, C. J. M. Van Rijn, H. V. Jansen, R. G. H. Lammertink, M. Wessling, Polymeric microsieves produced by phase separation micromolding, J. Membr. Sci. 283, no. 1-2 (2006) 411-424.
    [39] Y. Huang, J. Sun, D. Wu, X. Feng, Layer-by-layer self-assembled chitosan/PAA nanofiltration membranes, Sep. Purif. Technol. 207 (2018) 142-150.
    [40] S. Gao, Y. Zhu, J. Wang, F. Zhang, J. Li, J. Jin, Layer‐by‐layer construction of Cu2+/alginate multilayer modified ultrafiltration membrane with bioinspired superwetting property for high‐efficient crude‐oil‐in‐water emulsion separation, Adv. Funct. Mater. 28, no. 49 (2018) 1801944.
    [41] C. Wang, Myoung J. Park, D. H. Seo, S. Phuntsho, R. R.Gonzales, H. Matsuyama, E. Drioli, H. K. Shon, Inkjet printed polyelectrolyte multilayer membrane using a polyketone support for organic solvent nanofiltration, J. Membr. Sci. 642 (2022): 119943.
    [42] F. Xiang, A. M. Marti, D. P. Hopkinson, Layer-by-layer assembled polymer/MOF membrane for H2/CO2 separation, J. Membr. Sci. 556 (2018) 146-153.
    [43] Q. Zhao, D. L. Zhao, L. Y. Ee, T. S. Chung, S. B. Chen, In-situ coating of Fe-TA complex on thin-film composite membranes for improved water permeance in reverse osmosis desalination, Desalination 554 (2023) 116515.
    [44] Y. Wang, H. Peng, H. Wang, M. Zhang, W. Zhao, Y. Zhang, In-situ synthesis of MOF nanoparticles in double-network hydrogels for stretchable adsorption device, J. Chem. Eng. 450 (2022) 138216.
    [45] U. Alli, K. McCarthy, I. A. Baragau, N. P. Power, D. J. Morgan, S. Dunn, S. Killian, T. Kennedy, S. Kellici, In-situ continuous hydrothermal synthesis of TiO2 nanoparticles on conductive N-doped MXene nanosheets for binder-free Li-ion battery anodes, J. Chem. Eng. 430 (2022) 132976.
    [46] L. Liang, J. Chen, X. Chen, J. Wang, H. Qiu, In situ synthesis of a GO/COFs composite with enhanced adsorption performance for organic pollutants in water, Environ. Sci. Nano 9, no. 2 (2022) 554-567.
    [47] S. J. Ullattil, P. Periyat, Sol-gel synthesis of titanium dioxide, Sol-Gel Materials for Energy, Environ. Sci. Technol. (2017) 271-283.
    [48] V. Pawar, M. Kumar, P. K. Dubey, M. K. Singh, A. S. K. Sinha, P. Singh, Influence of synthesis route on structural, optical, and electrical properties of TiO2, Appl. Phys. A. 125 (2019) 1-14.
    [49] J. Li, L. Cheng, W. Song, Y. Xu, F. Liu, Z. Wang, In-situ sol-gel generation of SiO2 nanoparticles inside polyamide membrane for enhanced nanofiltration, Desalination 540 (2022) 115981.
    [50] T. A. Otitoju, A. L. Ahmad, B. S. Ooi, Superhydrophilic (superwetting) surfaces: A review on fabrication and application, J. Ind. Eng. Chem. 47 (2017) 19-40.
    [51] J. Zhang, W. Qu, X. Li, Z. Wang, Surface engineering of filter membranes with hydrogels for oil-in-water emulsion separation, Sep. Purif. Technol. (2022) 122340.
    [52] J. Udomsin, C. C. Hu, C. F. Wang, J. K. Chen, H. C. Tsai, S. W. Kuo, W. S. Hung, and J. Y. Lai, Constructing Superwetting Membranes by Sodium Lignosulfonate-Modified Carbon Nanotube for Highly Efficient Crude Oil-In-Water Emulsions Separations, Sep. Purif. Technol. (2023) 124349.
    [53] M. Long, Y. Ma, C. Yang, R. Zhang, Z. Jiang, Superwetting membranes: from controllable constructions to efficient separations, J. Mater. Chem. A 9, no. 3 (2021) 1395-1417.
    [54] U. Baig, M. Faizan, M. A. Dastageer, Polyimide based super-wettable membranes/materials for high performance oil/water mixture and emulsion separation: A review, Adv. Colloid Interface Sci. 297 (2021) 102525.
    [55] B. Xiang, Q. Sun, Q. Zhong, P. Mu, J. Li, Current research situation and future prospect of superwetting smart oil/water separation materials, J. Mater. Chem. A 10, no. 38 (2022) 20190-20217.
    [56] Z. He, D. J. Miller, S. Kasemset, D. R. Paul, B. D. Freeman. "The effect of permeate flux on membrane fouling during microfiltration of oily water." J. Membr. Sci. 525 (2017) 25-34.
    [57] E. Virga, R. W. Field, P. M. Biesheuvel, W. M. de Vos, Theory of oil fouling for microfiltration and ultrafiltration membranes in produced water treatment, J. Colloid Interface Sci. 621 (2022) 431-439.
    [58] N. Debnath, A. Kumar, T. Thundat, M. Sadrzadeh, Investigating fouling at the pore-scale using a microfluidic membrane mimic filtration system, Sci. Rep. 9, no. 1 (2019) 10587.
    [59] L. Tan, N. Han, Y. Qian, H. Zhang, H. Gao, L. Zhang, X. Zhang, Superhydrophilic and underwater superoleophobic poly (acrylonitrile-co-methyl acrylate) membrane for highly efficient separation of oil-in-water emulsions, J. Membr. Sci. 564 (2018) 712-721.
    [60] C. Luo, Q. Liu, Oxidant-induced high-efficient mussel-inspired modification on PVDF membrane with superhydrophilicity and underwater superoleophobicity characteristics for oil/water separation, ACS Appl. Mater. Interfaces 9, no. 9 (2017) 8297-8307.
    [61] X. Yang, Y. He, G. Zeng, X. Chen, H. Shi, D. Qing, F. Li, Q. Chen. "Bio-inspired method for preparation of multiwall carbon nanotubes decorated superhydrophilic poly (vinylidene fluoride) membrane for oil/water emulsion separation." J. Chem. Eng. 321 (2017) 245-256.
    [62] A. Asad, M.Rastgar, D. Sameoto, M. Sadrzadeh, Gravity assisted super high flux microfiltration polyamide-imide membranes for oil/water emulsion separation, J. Membr. Sci. 621 (2021) 119019.
    [63] J. Gao, J. Wang, Q. Xu, S. Wu, Y. Chen, Regenerated cellulose strongly adhered by a supramolecular adhesive onto the PVDF membrane for a highly efficient oil/water separation, Green Chem. 23, no. 15 (2021) 5633-5646.
    [64] M. Barrejón, M. Prato, Carbon nanotube membranes in water treatment applications, Adv. Mater. Interfaces 9, no. 1 (2022) 2101260.
    [65] Y. Liu, J. Guan, Y. Su, R. Zhang, J. Cao, M. He, J. Yuan, F. Wang, X. You, Z. Jiang, Graphene oxide membranes with an ultra-large interlayer distance through vertically grown covalent organic framework nanosheets, J. Mater. Chem. A 7, no. 44 (2019): 25458-25466.
    [66] X. Yue, T. Zhang, D. Yang, F. Qiu, Z. Li,Ultralong MnO2 nanowire enhanced multiwall carbon nanotube hybrid membrane with underwater superoleophobicity for efficient oil-in-water emulsions separation, Ind. Eng. Chem. Res. 57, no. 31 (2018) 10439-10447.
    [67] A. CQ Silva, A. JD Silvestre, C. Vilela, C. SR Freire, Natural polymers-based materials: A contribution to a greener future, Molecules 27, no. 1 (2021) 94.
    [68] S. Wu, W. Shi, K. Li, J. Cai, L. Chen, Recent advances on sustainable bio-based materials for water treatment: Fabrication, modification and application, J. Environ. Chem. Eng. (2022) 108921.
    [69] T. Matsubayashi, M. Tenjimbayashi, M. Komine, K. Manabe, S. Shiratori, Bioinspired hydrogel-coated mesh with superhydrophilicity and underwater superoleophobicity for efficient and ultrafast oil/water separation in harsh environments, Ind. Eng. Chem. Res. 56, no. 24 (2017) 7080-7085.
    [70] H. Li, W. Zheng, H. Xiao, B. Hao, Y. Wang, X. Huang, B. Shi., Collagen fiber membrane-derived chemically and mechanically durable superhydrophobic membrane for high-performance emulsion separation, J. Leather Sci. Eng 3 (2021) 1-10.
    [71] Z. Xu, Z. Li, Y. Jiang, G. Xu, M. Zhu, W. C. Law, K. T. Yong, Recent advances in solar-driven evaporation systems, J. Mater. Chem. A 8, no. 48 (2020) 25571-25600.
    [72] T. Y. Wang, H. B. Huang, H. L. Li, Y. K. Sun, Y. H. Xue, S. N. Xiao, J. H. Yang, Carbon materials for solar-powered seawater desalination, New Carbon Mater. 36, no. 4 (2021) 683-701.
    [73] J. Kim, J. Hwang, S. Kim, S. H. Cho, H. Choi, H. Y. Kim, Y. S. Lee, Interfacial solar evaporator-physical principles and fabrication methods, Int. J. Precis. Eng. Manuf. - Green Technol. 8, no. 4 (2021) 1347-1367.
    [74] B. Zhu, H. Kou, Z. Liu, Z. Wang, D. K. Macharia, M. Zhu, B. Wu, X. Liu, Z. Chen, Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater, ACS Appl. Mater. Interfaces 11, no. 38 (2019) 35005-35014.
    [75] Y. Kuang, C. Chen, S. He, E. M. Hitz, Y. Wang, W. Gan, R. Mi, L. Hu, A high‐performance self‐regenerating solar evaporator for continuous water desalination, Adv. Mater. 31, no. 23 (2019) 1900498.

    Chapter 3
    [1] W. Qiu, H. Yang, L. Wan, Z. Xu, Co-deposition of catechol/polyethyleneimine on porous membranes for efficient decolorization of dye water, J. Mater. Chem. A 3 (2015) 14438-14444.
    [2] B. Liang, G. Zhang, Z. Zhong, T. Sato, A. Hozumi, Z. Su, Substrate-independent polyzwitterionic coating for oil/water separation membranes, Chem. Eng. J. 362 (2019) 126-135.
    [3] A. Xie, J. Dai, C. Ma, J. Cui, Y. Chen, J. Lang, M. Gao, C. Li, Y. Yan, Construction of caterpillar-like cobalt-nickel hydroxide/carbon cloth hierarchical architecture with reversible wettability towards on-demand oil-water separation, Appl. Surf. Sci. 462 (2018) 659-668.
    [4] Z. Xue, Y. Cao, N. Liu, L. Feng, L. Jiang, Special wettable materials for oil/water separation, J. Mater. Chem. A 2 (2014) 2445-2460.
    [5] J. Li, Y. Zhou, Z. Luo, Polymeric materials with switchable superwettability for controllable oil/water separation: A comprehensive review, Prog. Polym. Sci. 87 (2018) 1-33.
    [6] U. Baig, M. Faizan, A. Waheed, A review on super-wettable porous membranes and materials based on bio-polymeric chitosan for oil-water separation, Adv. Colloid Interface Sci. 303 (2022) 102635.
    [7] H. He, H. Jiang, C. Chen, L. Ouyang, W. Jiang, and S. Yuan, Efficient Oil/Water Separation by Zwitterionic Poly(sulfobetaine methacrylate)@Cu(OH)2 Nanoneedle Array-Coated Copper Meshes with Superwetting and Antifouling Properties, ACS Sustain. Chem. Eng. 7 (2019) 13815−13826.
    [8] S. Thoka, A. Lee, M. Huang, Scalable Synthesis of Size-Tunable Small Cu2O Nanocubes and Octahedra for Facet-Dependent Optical Characterization and Pseudomorphic Conversion to Cu Nanocrystals, ACS Sustainable Chem. Eng. 7 (2019) 10467−10476.
    [9] Z. Li, H. He, Y. Liang, L. Ouyang, T. Zhang, S. Yuan, Photocatalytically Driven Self-Cleaning and Underwater
    Superoleophobic Copper Mesh Modified with Hierarchical Bi2WO6@CuO Nanowires for Oil/Water Separation, Ind. Eng. Chem. Res. 59 (2020) 16450−16461.
    [10] S. Yuan, C. Chen, A. Raza, R. Song, T. Zhang, S. Pehkonen, B. Liang, Nanostructured TiO2/CuO dual-coated copper meshes with superhydrophilic, underwater superoleophobic and self-cleaning properties for highly efficient oil/water separation, J. Chem. Eng. 328 (2017) 497–510.
    [11] J. Lu, X. Liu, T. Zhang, H. He, S. Yuan, Magnetic superhydrophobic polyurethane sponge modified with
    bioinspired stearic acid@Fe3O4@PDA nanocomposites for oil/water separation, Colloids Surf. A Physicochem. Eng. Asp. 624 (2021) 126794.
    [12] D. Ejeta, C. Wang, S. Kuo, J. Chen, H. Tsai, W. Hung, C. Hu, J. Lai, Preparation of superhydrophobic and superoleophilic cotton-based material for extremely high flux water-in-oil emulsion separation, Chem. Eng. J. 402 (2020) 126289.
    [13] B. Zhou, B. Bashir, Y. Liu, B. Zhang, Facile construction and fabrication of a superhydrophobic copper mesh for ultraefficient oil/water separation, Ind. Eng. Chem. Res. 60 (2021) 8139-8146.
    [14] X. Li, Z. Yang, Y. Peng, F. Zhang, M. Lin, J. Zhang, Q. Lv, Z. Dong, Self-powered aligned porous superhydrophobic sponge for selective and efficient absorption of highly viscous spilled oil, J. Hazard. Mater. 435 (2022) 129018.
    [15] H. He, T. Zhang, Z. Li, Y. Liang, S. Yuan, Superhydrophilic fish-scale-like CuC2O4 nanosheets wrapped copper mesh with underwater super oil-repellent properties for effective separation of oil-in-water emulsions, Colloids Surf. A Physicochem. Eng. Asp. 627 (2021) 127133.
    [16] J. Yong, F. Chen, J. Huo, Y. Fang, Q. Yang, H. Bian, W. Li, Y. Wei, Y. Dai, X. Hou, Green, biodegradable, underwater superoleophobic wood sheet for efficient oil/water separation, ACS omega, 3 (2018) 1395-1402.
    [17] G. Zhang, Y. Liu, C. Chen, C. Huang, L. Long, S. Zhang, G. Yang, F. Shen, X. Zhang, Y. Zhang, Green, robust self-cleaning superhydrophilic coating and on-demand oil–water separation, Appl. Surf. Sci. 595 (2022) 153472.
    [18] X. Li, Y. Peng, F. Zhang, Z. Yang, Z. Dong, Fast-response, no-pretreatment, and robustness air-water/oil amphibious superhydrophilic-superoleophobic surface for oil/water separation and oil-repellent fabrics, Chem. Eng. J. 427 (2022) 132043.
    [19] C. Ao, L. Jiang, Q. Wang, X. Xue, J. Gai, W. Zhang, C. Lu, One-pot superhydrophilic surface modification of waste polyurethane foams for high-efficiency oil/water separation, J. Environ. Manage. 315 (2022) 115140.
    [20] R. Krishnamoorthi, R. Anbazhagan, H. Tsai, C. Wang, J. Lai, Biodegradable, superwettable caffeic acid/chitosan polymer coated cotton fibers for the simultaneous removal of oils, dyes, and metal ions from water, Chem. Eng. J. 427 (2022) 131920.
    [21] M. Gwak, B. Hong, J. Seok, S. Park, W. Park, Effect of tannic acid on the mechanical and adhesive properties of catechol-modified hyaluronic acid hydrogels, Int. J. Biol. Macromol. 191 (2021) 699-705.
    [22] M.A. Rahim, H. Ejima, K. Cho, K. Kempe, M. Müllner, J. Best, F. Caruso, Coordination-driven multistep assembly of metal–polyphenol films and capsules, Chem. Mater. 26 (2014) 1645-1653.
    [23] Y. Song, X. Kong, X. Yin, Y. Zhang, C. Sun, J. Yuan, B. Zhu, L. Zhu, Tannin-inspired superhydrophilic and underwater superoleophobic polypropylene membrane for effective oil/water emulsions separation, Colloids Surf. A Physicochem. Eng. Asp. 522 (2017) 585-592.
    [24] J. Udomsin, A. Prasannan, C. Wang, J. Chen, H. Tsai, W. Hung, C. Hu, J. Lai, Preparation of carbon nanotube/tannic acid/polyvinylpyrrolidone membranes with superwettability for highly efficient separation of crude oil-in-water emulsions, J. Membr. Sci. 636 (2021) 119568.
    [25] H. Ejima, J. Richardson, K. Liang, J. Best, M. Koeverden, G. Such, J. Cui, F. Caruso, One-step assembly of coordination complexes for versatile film and particle engineering, Sci. 341 (2013) 154-157.
    [26] F. Hu, R. Zhang, W. Guo, T. Yan, X. He, F. Hu, F. Ren, X. Ma, J. Lei, W. Zheng, PEGylated-PLGA Nanoparticles Coated with pH-Responsive Tannic Acid–Fe (III) Complexes for Reduced Premature Doxorubicin Release and Enhanced Targeting in Breast Cancer, Mol. Pharm. 18 (2020) 2161-2173.
    [27] S. Kim, S. Philippot, S. Fontanay, R. Duval, E. Lamouroux, N. Canilho, A. Pasc, pH-and glutathione-responsive release of curcumin from mesoporous silica nanoparticles coated using tannic acid–Fe (iii) complex, RSC Adv. 5 (2015) 90550-90558.
    [28] J. Park, S. Choi, H. Moon, H. Seo, J. Kim, S. Hong, B. Lee, E. Kang, J. Lee, D. Ryu, Antimicrobial spray nanocoating of supramolecular Fe (III)-tannic acid metal-organic coordination complex: Applications to shoe insoles and fruits, Sci. Rep. 7 (2017) 1-7.
    [29] Q. Gu, X. Chen, C. Lu, C. Ye, W. Li, J. Chu, W. Zhang, Z. Wang, B. Xu, Electrochemical determination of capsaicinoids content in soy sauce and pot-roast meat products by glassy carbon electrode modified with MXene/PDDA-carbon nanotubes/β-cyclodextrin, Food Control, 138 (2022) 109022.
    [30] L. Liu, L. Wang, Q. Liang, T. Guo, F. Guo, Hydrogen peroxide residue determination in food samples by a glassy carbon electrode modified with CuO-SWCNT-PDDA nanocomposites, Microchem. J. 167 (2021) 106327.
    [31] T. Hu, M. Zhang, Z. Wang, K. Chen, X. Li, Z. Ni, Layer-by-layer self-assembly of MoS2/PDDA hybrid film in microfluidic chips for ultrasensitive electrochemical immunosensing of alpha-fetoprotein, Microchem. J, 158 (2020) 105209.
    [32] R. Liu, L. Jiang, Z. Yu, X. Jing, X. Liang, D. Wang, B. Yang, C. Lu, W. Zhou, S. Jin, MXene (Ti3C2Tx)-Ag nanocomplex as efficient and quantitative SERS biosensor platform by in-situ PDDA electrostatic self-assembly synthesis strategy, Sens. Actuators B Chem. 333 (2021) 129581.
    [33] A. Ribeiro, P. Araújo, Antimicrobial polymer− based assemblies: A review, Int. J. Mol. Sci. 22 (2021) 5424.
    [34] G. Fard, L. Maleknia, M. Giahi, A. Almasian, M. Shabani, S. Dehdast, Synthesis and characterization of novel antibacterial PdDA/honey nanofiber against Gram-positive and Gram-negative bacteria, J. Nanomed. Res. 5 (2020) 75-89.
    [35] A. Panáček, A. Balzerová, R. Prucek, V. Ranc, R. Večeřová, V. Husičková, J. Pechoušek, J. Filip, R. Zbořil, L. Kvítek, Preparation, characterization and antimicrobial efficiency of Ag/PDDA-diatomite nanocomposite, Colloids Surf. B: Biointerfaces. 110 (2013) 191-198.
    [36] H. Guo, S. Yu, T. Liu, Q. An, X. Ren, Z. Qin, Y. Liang, Counterion‐Switched Reversibly Hydrophilic and Hydrophobic TiO2‐Incorporated Layer‐By‐Layer Self‐Assembled Membrane for Nanofiltration, Macromol. Mater. Eng. 304 (2019) 1900481.
    [37] Y. Meng, L. Shu, L. Xie, M. Zhao, T. Liu, J. Li, High performance nanofiltration in BUT-8 (A)/PDDA mixed matrix membrane fabricated by spin-assisted layer-by-layer assembly, J. Taiwan Inst. Chem. Eng. 115 (2020) 331-338.
    [38] H. Fan, J. Wang, Q. Zhang, Z. Jin, Tannic acid-based multifunctional hydrogels with facile adjustable adhesion and cohesion contributed by polyphenol supramolecular chemistry, ACS omega, 2 (2017) 6668-6676.
    [39] H. Fan, L. Wang, X. Feng, Y. Bu, D. Wu, Z. Jin, Supramolecular hydrogel formation based on tannic acid, Macromolecules 50 (2017) 666-676.
    [40] A. Xie, J. Cui, Y. Liu, C. Xue, Y. Wang, J. Dai, Preparation of Janus membrane based on biomimetic polydopamine interface regulation and superhydrophobic attapulgite spraying for on-demand oil-water emulsion separation, J. Membr. Sci. 627 (2021) 119242.
    [41] X. Huang, Z. Wu, S. Zhang, W. Xiao, L. Zhang, L. Wang, H. Xue, J. Gao, Mechanically robust Janus nanofibrous membrane with asymmetric wettability for high efficiency emulsion separation, J. Hazard. Mater, 429 (2022) 128250.
    [42] J. Gu, P. Xiao, J. Chen, J. Zhang, Y. Huang, T. Chen, Janus polymer/carbon nanotube hybrid membranes for oil/water separation, ACS Appl. Mater. Interfaces. 18 (2014) 16204-16209.
    [43] Y. Lin, M. Salem, L. Zhang, Q. Shen, A. El-shazly, N. Nady, H. Matsuyama, Development of Janus membrane with controllable asymmetric wettability for highly-efficient oil/water emulsions separation, J. Membr. Sci. 606 (2020) 118141.

    Chapter 4
    [1] Z. Xu, L. Zhu, J. Zhang, H. Li, S. Yu, R. Wang, Z. Yan, J. Xue, Q. Xue, Robust modified nylon mesh for the separation of crude-oil/water emulsion based on the coupling of squeezing coalescence demulsification and sieving separation, Sep. Purif. Technol. 295 (2022) 121319.
    [2] Y. Zheng, C. Zhang, L. Wang, X. Long, J. Zhang, Y. Zuo, F. Jiao, Tannic acid-based complex coating modified membranes with photo-Fenton self-cleaning property for sustainable oil-in-water emulsion separation, Sep. Purif. Technol. 272 (2021) 118893.
    [3] Q. Sun, W. Luo, Q. Zhong, B. Xiang, P. Mu, J. Li, Facile preparation of attapulgite nanofiber membrane for efficient separation of high-viscosity oil-in-water emulsions, Colloids Surf. A Physicochem. 628 (2021) 127322.
    [4] Q. Zhong, G. Shi, Q. Sun, P. Mu, J. Li, Robust PVA-GO-TiO2 composite membrane for efficient separation oil-in-water emulsions with stable high flux, J. Membr. Sci. 640 (2021) 119836.
    [5] T. Mokoba, Z. Li, T. C. Zhang, S. Yuan, Superwetting sea urchin-like BiOBr@ Co3O4 nanowire clusters-coated copper mesh with efficient emulsion separation and photo-Fenton-like degradation of soluble dye, Appl. Surf. Sci. 594 (2022) 153497.
    [6] C. Chen, Q. Liu, Z. Yang, Q. Ye, Q.F. An, Substrate-independent fabrication of superhydrophilic membrane based on dopamine methacrylamide and zwitterionic substance for effective oil-in-water emulsion separation, J. Taiwan Inst. Chem. Eng. 139 (2022) 104513.
    [7] J. Xi, Y. Lou, S. Jiang, H. Dai, P. Yang, X. Zhou, G. Fang, W. Wu, High flux composite membranes based on glass/cellulose fibers for efficient oil-water emulsion separation, Colloids Surf. A Physicochem. 647 (2022) 129016.
    [8] L. Han, X. Li, F. Li, H. Zhang, G. Li, Q. Jia, S. Zhang, Superhydrophilic/air-superoleophobic diatomite porous ceramics for highly-efficient separation of oil-in-water emulsion, J. Environ. Chem. Eng. 10 (2022) 108483.
    [9] J. Cui, A. Xie, Y. Liu, C. Xue, J. Pan, Fabrication of multi-functional imprinted composite membrane for selective tetracycline and oil-in-water emulsion separation, Compos. Commun. 28 (2021) 100985.
    [10] N. Zhang, K. Cheng, J. Zhang, N. Li, X. Yang, Z. Wang, A dual-biomimetic strategy to construct zwitterionic anti-fouling membrane with superior emulsion separation performance, J. Membr. Sci. 660 (2022) 120829.
    [11] X. Chen, Y. Zhan, A. Sun, Q. Feng, W. Yang, H. Dong, Y. Chen, Y. Zhang, Anchoring the TiO2@ crumpled graphene oxide core–shell sphere onto electrospun polymer fibrous membrane for the fast separation of multi-component pollutant-oil–water emulsion, Sep. Purif. Technol. 298 (2022) 121605.
    [12] Q. Feng, Y. Zhan, W. Yang, H. Dong, A. Sun, Y. Liu, X. Wen, Y. H. Chiao, S. Zhang, Layer-by-layer construction of super-hydrophilic and self-healing polyvinylidene fluoride composite membrane for efficient oil/water emulsion separation, Colloids Surf. A Physicochem. 629 (2021) 127462.
    [13] A. M. Pornea, J. M. C. Puguan, V. G. Deonikar, H. Kim, Robust Janus nanocomposite membrane with opposing surface wettability for selective oil-water separation, Sep. Purif. Technol. 236 (2020) 116297.
    [14] C. Liu, J. Xia, J. Gu, W. Wang, Q. Liu, L. Yan, T. Chen, Multifunctional CNTs-PAA/MIL101 (Fe)@ Pt composite membrane for high-throughput oily wastewater remediation, J. Hazard. Mater. 403 (2021) 123547.
    [15] N. G. Sahoo, S. Rana, J. W. Cho, L. Li, S. H. Chan, Polymer nanocomposites based on functionalized carbon nanotubes, Prog. Polym. Sci. 35 (2010) 837-867.
    [16] T. Ogoshi, T. Saito, T. Yamagishi, Y. Nakamoto, Solubilization of single-walled carbon nanotubes by entanglements between them and hyperbranched phenolic polymer, Carbon 47 (2009) 117-123.
    [17] N. Berton, F. Lemasson, A. Poschlad, V. Meded, F. Tristram, W. Wenzel, F. Hennrich, M. M. Kappes, M. Mayor, Selective Dispersion of Large‐Diameter Semiconducting Single‐Walled Carbon Nanotubes with Pyridine‐Containing Copolymers, Small 10 (2014) 360-367.
    [18] Y. Liu, L. Gao, J. Sun, Noncovalent functionalization of carbon nanotubes with sodium lignosulfonate and subsequent quantum dot decoration, J. Phys. Chem. C 111 (2007) 1223-1229.
    [19] A. K. Mondal, D. Xu, S. Wu, Q. Zou, W. Lin, F. Huang, Y. Ni, High lignin containing hydrogels with excellent conducting, self-healing, antibacterial, dye adsorbing, sensing, moist-induced power generating and supercapacitance properties, Int. J. Biol. Macromol. 207 (2022) 48-61.
    [20] W. Zhou, M. Chen, Q. Tian, J. Chen, X. Xu, X. Han, J. Xu, Stabilizing zinc deposition with sodium lignosulfonate as an electrolyte additive to improve the life span of aqueous zinc-ion batteries, J. Colloid Interface Sci. 601 (2021) 486-494.
    [21] K. Song, I. Ganguly, I. Eastin, A. B. Dichiara, Lignin-modified carbon nanotube/graphene hybrid coating as efficient flame retardant, Int. J. Mol. Sci. 18 (2017) 2368.
    [22] Y. Jeong, J. Kim, G. W. Lee, Optimizing functionalization of multiwalled carbon nanotubes using sodium lignosulfonate, Colloid Polym Sci. 288 (2010) 1-6.
    [23] H. Q. Ye, Y. H. Deng, Y. Yan, M. J. Zhang, Y. Qian, X. Q. Qiu, Influence of sodium lignosulfonate with different molecular weights on the dispersion of multiwalled carbon nanotubes. Acta Phys. Chim. Sin. 31 (2015) 1991–1996.
    [24] D. Puentes-Camacho, E. F. Velázquez, D. E. Rodríguez-Félix, M. Castillo-Ortega, R. R. Sotelo-Mundo, T. del Castillo-Castro, Functionalization of multiwalled carbon nanotubes by microwave irradiation for lysozyme attachment: comparison of covalent and adsorption methods by kinetics of thermal inactivation, Adv. Nat. Sci.: Nanosci. Nanotechnol. 8 (2017) 045011.
    [25] X. Zhao, L. Cheng, R. Wang, N. Jia, L. Liu, C. Gao, Bioinspired synthesis of polyzwitterion/titania functionalized carbon nanotube membrane with superwetting property for efficient oil-in-water emulsion separation, J. Membr. Sci. 589 (2019) 117257.
    [26] A. B. D. Cassie, S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc. 40 (1944) 546-551.
    [27] X. Huang, S. Zhang, W. Xiao, J. Luo, B. Li, L. Wang, H. Xue, J. Gao, Flexible PDA@ ACNTs decorated polymer nanofiber composite with superhydrophilicity and underwater superoleophobicity for efficient separation of oil-in-water emulsion, J. Membr. Sci. 614 (2020) 118500.
    [28] H. N. Doan, P. P. Vo, A. Baggio, M. Negoro, K. Kinashi, Y. Fuse, W. Sakai, N. Tsutsumi, Environmentally friendly chitosan-modified polycaprolactone nanofiber/nanonet membrane for controllable oil/water separation, ACS Appl. Polym. Mater. 3 (2021) 3891-3901.
    [29] Y. Gu, H. Li, L. Liu, J. Li, B. Zhang, H. Ma, Constructing CNTs-based composite membranes for oil/water emulsion separation via radiation-induced “grafting to” strategy, Carbon 178 (2021) 678-687.
    [30] L. Yan, G. Zhang, L. Zhang, W. Zhang, J. Gu, Y. Huang, J. Zhang, T. Chen, Robust construction of underwater superoleophobic CNTs/nanoparticles multifunctional hybrid membranes via interception effect for oily wastewater purification, J. Membr. Sci. 569 (2019) 32-40.
    [31] X. Zhao, L. Cheng, N. Jia, R. Wang, L. Liu, C. Gao, Polyphenol-metal manipulated nanohybridization of CNT membranes with FeOOH nanorods for high-flux, antifouling and self-cleaning oil/water separation, J. Membr. Sci. 600 (2020) 117857.
    [32] J. Udomsin, A. Prasannan, C. F. Wang, J. K. Chen, H. C. Tsai, W. S. Hung, C. C. Hu, J. Y. Lai, Preparation of carbon nanotube/tannic acid/polyvinylpyrrolidone membranes with superwettability for highly efficient separation of crude oil-in-water emulsions, J. Membr. Sci. 636 (2021) 119568.

    Chapter 5
    [1] A. Asatekin, A. M. Mayes, Oil industry wastewater treatment with fouling resistant membranes containing amphiphilic comb copolymers, Environ. Sci. Technol. 43, no. 12 (2009) 4487-4492.
    [2] Y. Xiang, F. Liu, L. Xue, Under seawater superoleophobic PVDF membrane inspired by polydopamine for efficient oil/seawater separation, J. Membr. Sci. 476 (2015) 321-329.
    [3] S. He, Y. Zhan, S. Zhao, L. Lin, J. Hu, G. Zhang, M. Zhou, Design of stable super-hydrophobic/super-oleophilic 3D carbon fiber felt decorated with Fe3O4 nanoparticles: Facial strategy, magnetic drive and continuous oil/water separation in harsh environments, Appl. Surf. Sci. 494 (2019) 1072-1082.
    [4] Y. Zhan, G. Zhang, Q. Feng, W. Yang, J. Hu, X. Wen, Y. Liu, S. Zhang, A. Sun, Fabrication of durable super-hydrophilic/underwater super-oleophobic poly (arylene ether nitrile) composite membrane via biomimetic co-deposition for multi-component oily wastewater separation in harsh environments, Colloids Surf. A: Physicochem. Eng. Asp. 624 (2021) 126754.
    [5] H. Li, J. Zhang, L. Zhu, H. Liu, S. Yu, J. Xue, X. Zhu, Q. Xue, Reusable membrane with multifunctional skin layer for effective removal of insoluble emulsified oils and soluble dyes, J. Hazard. Mater. 415 (2021) 125677.
    [6] G. Nie, S. Qiu, X. Wang, Y. Du, Q. Zhang, Y. Zhang, H. Zhang, A millimeter-sized negatively charged polymer embedded with molybdenum disulfide nanosheets for efficient removal of Pb (II) from aqueous solution, Chin. Chem. Lett. 32, no. 7 (2021) 2342-2346.
    [7] M. W. Lee, S. An, S. S. Latthe, C. Lee, S. Hong, S. S. Yoon, Electrospun polystyrene nanofiber membrane with superhydrophobicity and superoleophilicity for selective separation of water and low viscous oil, ACS Appl. Mater. Interfaces 5, no. 21 (2013) 10597-10604.
    [8] Y. Huang, J. Sun, D. Wu, X. Feng, Layer-by-layer self-assembled chitosan/PAA nanofiltration membranes, Sep. Purif. Technol. 207 (2018) 142-150.
    [9] S. Gao, Y. Zhu, J. Wang, F. Zhang, J. Li, J. Jin, Layer‐by‐layer construction of Cu2+/alginate multilayer modified ultrafiltration membrane with bioinspired superwetting property for high‐efficient crude‐oil‐in‐water emulsion separation, Adv. Funct. Mater. 28, no. 49 (2018) 1801944.
    [10] E. Virga, R.W. Field, P.M. Biesheuvel, W.M. de Vos, Theory of oil fouling for microfiltration and ultrafiltration membranes in produced water treatment, J. Colloid Interface Sci. 621 (2022) 431-439.
    [11] F. Pei, H. Jia, S. Xu, M. Zhang, Y. Qu, Preparation of superhydrophilic polyimide fibrous membranes by electrostatic spinning fabrication for the efficient separation of oil-in-water emulsions, Sep. Purif. Technol. (2023) 124342.
    [12] Q. Feng, Y. Zhan, W. Yang, H. Dong, A. Sun, Y. Liu, X. Wen, Y. H. Chiao, S. Zhang, Layer-by-layer construction of super-hydrophilic and self-healing polyvinylidene fluoride composite membrane for efficient oil/water emulsion separation, Colloids Surf. A: Physicochem. Eng. Asp. 629 (2021) 127462.
    [13] M. Barrejón, M. Prato, Carbon nanotube membranes in water treatment applications, Adv. Mater. Interfaces 9, no. 1 (2022) 2101260.
    [14] T. Dobbins, R. Chevious, Y. Lvov, Behavior of Na+-polystyrene sulfonate at the interface with single-walled carbon nanotubes (SWNTs) and its implication to SWNT suspension stability, Polym. J. 3, no. 2 (2011) 942-954.
    [15] C. Hassam, D.A. Lewis, Dispersion of single and multiwalled nanotubes with poly (sodium styrene sulfonate)–effect of ph and ionic strength on dispersion stability, Aust. J. Chem. 67, no. 1 (2013) 66-70.
    [16] C. F. Wang, X. Y. Huang, H. P. Lin, J. K. Chen, H. T. Tsai, W. S. Hung, C. C. Hu, J. Y. Lai, Sustainable, biocompatible, and mass-producible superwetting water caltrop shell biochars for emulsion separations, J. Hazard. Mater. 439 (2022) 129567.

    無法下載圖示 全文公開日期 2025/08/10 (校內網路)
    全文公開日期 2025/08/10 (校外網路)
    全文公開日期 2025/08/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE