簡易檢索 / 詳目顯示

研究生: 枋伯勳
Po-hsun Fang
論文名稱: 以三甲基銦/第三丁基聯胺之有機金屬化學氣相沉積系統合成氮化銦薄膜之研究
Synthesis of InN film using TMIn/TBHy MOCVD system
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 黃柏仁
Bohr-Ran Huang
葉秉慧
Pinghui Sophia Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 110
中文關鍵詞: 氮化銦第三丁基聯胺三甲基銦
外文關鍵詞: Tertiarybutylhydrazine(TBHy), InN, Trimethylindium(TMIn)
相關次數: 點閱:163下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用有機金屬化學氣相沉積(MOCVD)系統,將氮源由傳統MOCVD製程中所使用的氨氣(NH3)改為第三丁基聯胺(tertiarybutylhydrazine, TBHy),來與三甲基銦(trimethyl indium,TMIn)成長氮化銦薄膜。探討不同的V/III原料供給比與反應溫度對成長氮化銦薄膜的影響。
    結果發現在反應溫度為600 oC、TBHy/TMIn原料供給比為28.5的反應條件下長膜為沿著C面的(002)方向成長,其光激發螢光光譜(PL)測量結果發現峰值出現在1613 nm,對應到0.77 eV的能隙,顯示的確成功製作出氮化銦薄膜
    使用第三丁基聯胺為氮源與三甲基鎵跟三甲基銦來成長三元氮化銦鎵薄膜的研究發現在TMIn/TMIn+TMGa 原料供給比為0.30,反應溫度為650oC成長150分鐘後的膜層,藉由X光射線繞射圖譜可得2θ為33.07o,計算出銦含量為42.34%。


    Indium Nitride (InN) thin film have been synthesized successfully by metalorganic chemical vapor deposition (MOCVD) technique using trimethylindium (TMIn) and butylhyrazine (TBHy) as the reactants for the first time.
    In contrast to the necessity of over several ten thousand V/III precursor feeding ratio using NH3 as the nitrogen source, we found that InN thin films along (002) plane can be successfully grown at 600℃using quite a low V/III precursor feeding ratio of 28.5 when applying TBHy as the nitrogen source. The photo-luminance measurement revealed an evident signal at 1613 nm (corresponding to 0.77 eV), strongly suggesting that InN was successfully synthesized. Moreover, InGaN films with indium content as high as 42% were also obtained, as calculated by the shift of X-ray diffraction peak observed at 2=33.07。.

    摘 要 I ABSTRACT II 致謝 III 目錄 V 圖索引 VII 表索引 XIII 第一章 緒論 1 1.1 前言 1 1.2背景資料與文獻介紹 5 1.2.1 氮化銦材料特性與發展 5 1.2.2 氮化銦鎵材料特性與發展 9 1.3 氮化銦薄膜製成簡介 13 1.3.1 鹵素氣相沉積法(hydride vapor phase epitaxy,HVPE) 13 1.3.2 分子束磊晶法(molecular beam epitaxy,MBE) 13 1.3.3 有機金屬化學氣相沉積法 (MOCVD) 13 1.4 聯胺衍生物系列化合物氮原發展 16 1.5 研究方針與策略 18 第二章 實驗方法與步驟 19 2.1 實驗氣體及藥品 19 2.2 實驗設備與實驗步驟 23 2.2.1 實驗設備 23 2.2.2 實驗步驟 24 2.3 分析儀器 29 2.3.1 場發射掃瞄電子顯微鏡 (scanning electron microscope, SEM) 29 2.3.2 X射線繞射儀 (X-ray diffraction, XRD) 30 2.3.3 霍爾量測儀 (Hall measurement) 32 2.3.4 光激發螢光光譜儀 (photoluminescence, PL) 35 2.3.5 X射線光電子能譜化學分析儀 (X-ray photoelectron 37 Spectrometer, XPS) 37 第三章 結果與討論 38 3.1 氨氣/三甲基銦反應系統成長氮化銦薄膜 38 3.1.1 反應溫度對成長氮化銦薄膜的影響 38 3.1.2 NH3/TMIn 原料供給比對成長氮化銦薄膜的影響 47 3.2第三丁基聯胺/三甲基銦反應系統成長氮化銦一維奈米結構 52 3.2.1 反應溫度對成長氮化銦一維結構的影響 52 3.2.2 TBHy/TMIn 進料比對成長氮化銦薄膜的影響 55 3.3 第三丁基聯胺/三甲基鎵/三甲基銦反應系統成長高銦含量氮化銦鎵薄膜 71 3.3.1 反應溫度對銦含量的影響 72 3.3.2 不同 TMIn/(TMIn+TMGa) 進料比對銦含量的影響 77 第四章結論 83 參考文獻 85

    1. S. M. Sze, “Semiconductor Devices Physics and Technology, ” 2nd edition, John Wiley & Sons, Inc.,( 2002).
    2. 作者:中村修二、譯者:羅綸煥,“藍色高亮度發光二極體之開發過程”,工業材料, 97期,pp. 152-164,1995.
    3. Nakamura, S., “High Power GaN P-N Junction Blue Light Emitting Diode”,Japanese Journal of Applied Physics, Vol.30, pp. 1998-2000, 1991.
    4. Nakamura, S., and Fasol, G., The Blue Laser Diode, New York: Springer Verlage,pp.182-185, 1997.
    5. Davydov, V. Yu., Klochikhin, A. A.,Seisyan, R. P., Emtsev, V. V., Ivanov, S.V., Bechstedt, F., Furthmuller, J., Harima,H., Mudryi, A. V., Aderhold, J.,Semchinova, O., Graul, J., “Band Gap of Hexagonal InN and InGaN Alloys”, Phys.Stat. Sol. (b) 243, No. 3, pp. 787-795,2002.
    6. Wu, J., Walukiewicz, W., Yu, K.M., Ager III, J. W., Haller, E. E., Lu, H., Schaff, W.J., Saito, Y., Nanishi, Y.,“Unusual properties of the fundamental band gap of InN”, Appl. Phys. Lett., Vol. 80, No 21, pp.3967-3969, 2002.
    7. 林弘偉,”氮化銦磊晶及量子點材料之研究”,清華大學物理所,碩士論文(2004)。
    8. Http://nanopedia.cwru.edu/
    9. Manasevit, H. M., “Single-Crystal Gallium Arsenide on Insulating Substrates”, Appl.Phys. Lett., Vol. 12, No. 4, pp. 156-159 (1968).
    10. Y. Nanishi, Y. Saito, and T. Yamaguchi, “RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys”, Jpn. J. Appl. Phys., Vol.42,p.2549-2559.
    11. P. P. Chen, H. Makino, T. X. Li, J. B. Wang, W. Lu, and T. Yao,“Optical properties of InN films grown by molecular beam epitaxy at different conditions”, Thin Solid Films 513, 166 (2006).
    12. Enrico Bellotti, Bhautik K. Doshi, Kevin F. Brennan, John D. Albrecht, and P. Paul Ruden, “Ensemble monte carlo study of electron transport in wurtzite InN”, J. Appl. Phys. 85, 916 (1999).
    13. A. G. Bhuiyan, A. Hashimoto and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties.” J. Appl. Phys., Vol. 94,p.2779 (2003).
    14. S. Strite and H. Morkoc, J. Vac. Sci. Technol. B10, 1237 (1992)
    15. V. W. L. Chin, T. L. Tansely, T. Osotchan, J. Appl. Phys. 75, 7365(1994)
    16. E.T.Yu an M.O.Manasrech,III-nitride semiconductor:application and device.Taylor &Francis,pp.115-116,2003
    17. 李宗翰 “growth and optoelectronic properties of InN thin film” 輔仁大學物理所碩士論文,p.12(2001)
    18. E.T.Yu an M.O.Manasrech,III-nitride semiconductor:application and device.Taylor &Francis,pp.115-116,2003
    19. Wladek Walukiewicz, “P-type indium nitride achieved”, Materials Sciences Division, Berkeley Lab.
    20. R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E.Haller, H. Lu, and W. J. Schaff, “Evidence for p-type doping of InN”,Phys. Rev. Lett. 96, 125505 (2006).
    21. P. H. Chang, C. T. Liang, N. C. Chen, T. Y. Huang, and Y. F. Chen,“Superconductivity and mixed-state characteristic of InN films by metal-organic vapor phase epitaxy”, Diamond & Related Materials 15,1179 (2006).
    22. V. Yu. Davydov. A. A. Klochikhin, V. V. Etsev.S.V.Ivanov.V.V. Vckshin. F. Bechstcdt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold. J. Graul, and E. E. Haller,”Band gap of InN and In-rich InxGa1-xN alloys (0.36<x<1),”phys.stat.(b),vol.230,pp.R4-R6,2002.
    23. M.Higashiwaki, T. Inushima, and T. Matsui, “Control of electron density in InN by Si doping and optical properties of Si-doped InN,”phys.stat.sol.(b), vol.240,pp.417-420,2003.
    24. Y. Ishitani, K.Xu, S. B. CHe, H. Masuyama, W. Terashima, M.Yoshitani, N. Hashimoto, K. Akasaka, T. Ohkubo, and A. Yoshikawa, “Properties of the fundamental absorption edge of InN crystals investigated by opertical reflection and transmission spectra,” phys.stat.sol.(b),vol.241,pp.2849-2853,2004.
    25. H. Naoi, M. Kurouchi, T. Araki, T. Yamaguchi, and Y. Nanishi, “Correlation among growth conditions, crystal structures and optical properties of InN,” phys. stat. sol. (c), vol. 2, pp. 841-844, 2005.
    26. J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. Haller, Hai Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “Effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. , vol. 84, No. 15, pp. 2805-2807, 2004.
    27. S. Nargelas, T. Malinauskas, K.Jarasiunas, E. Dimakis and A. Georgakilas, “Investigation of optical nonlinearties and carrier dynamics in in-rich ingan alloys” ACTA PHYSICA POLONICA A, vol.113, No. 3, pp.839-843 ,2008.
    28. I.Akaski,”Nitride semiconductors and their device application,”Eur. Phys.J.Appl.phys.,vol.45,pp.20305(1)-20305(4),2009.
    29. O.Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,”Appl. Phys. Lett. , vol. 91,pp.132117(1)-132117(3),2007.
    30. X. Chen, K. D. Matthews, D. Hao, W. J. Schaff, and L. F. Eastman,”Growth , farbrication, and characterization of InGaN solar cells” phys. stat. sol. (a), vol.205, No35,pp.1103-1105,2008.
    31. C.Honsberg,W.A.Doolittle, and I. Ferguson, “Novel high sufficiency photovoltaic devices based on the III-N material system,” Final Technical Report,pp.1-11,2005-2008.
    32. G.F.Brown, J. w. AgerIII, W. Walukiewicz, and J. Wu, “Finite elecment simulations of compositionally graded InGaN solar cells” Solar Energy Materials & solar cells,vol.94,pp.478-483,2010.
    33. A. Yomamoto,Md. R.lslam, T. T. Kang, and A.HAashimoto,”Recent advances in InN-based solar cells:staus and challenges in InGaN and InAlN solar cells,”phys.stat.sol.(c),vol.7,No.5,pp.1309-1316.2010.
    34. A.Patel, M.Hoffbauer,T. Williamson ,A.Salazar and F. Arehuleta, “Characterization of InGaN based photovoltaic devices,”Materials Design Institute,pp.1-7,2009.
    35. I.H.Ho and G. B. Stringfellow,”Solid phase immiscibility on InGaN ,” Appl. Phys. Lett. , vol.69,PP.2701-2703,1996.
    36. R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano,”Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett,vol.70,pp.1089-1091,1997.
    37. A.Salvador, W, Kim, O. Aktas, A. Botchkarec, Z, Fan, and H Morkoc,”Near ultraviolet luminescence of Be doped GaN grown by reactive molecular beam epitaxy using ammonia,” Appl. Phys. Lett,vol.69.No.18.pp.2692-2694,1996.
    38. O.Brandt,H.Yang,H.Kostial,and K.h.Ploog,”High p-type conductivity in cubic GaN/GaAs(113)A by using Be as the acceptor and O as the codopant,” Appl. Phys. Lett,vol.69.No.18.pp.2707-2709,1996.
    39. F.Bernardini and V. Fiorentini.” Theoretical evidence for efficient p-type doping of GaN using beryllium,” Appl. Phys. Lett,vol.70,No.22,pp.2990-2992,1997.
    40. J.W.Ager III, R. E. Jones, D. M. Yamaguchi, K. M. Yu, W. Walukiewicz, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff,”p-type InN and In-rich InGaN,” phys.stat.sol. (b),vol.244, No.6,pp . 1820 -1824 ,2007.
    41. H. Naoi, M. Kurouchi,S. Takado, D. Muto, T. Araki, and Y. Nanishi,”Structural and luminescence properties of In-rich InGaN layers grown on InN templates by RF-MBE,” phys.stat.sol. (a),vol.202,Ni.14,pp.2642-2647,2005.
    42. M. Kurouchi, T. Arakil, H. Naoi, T. Yamaguchi, A. Suzuki, and Y. Nanishi, “Growth and properties of In-rich InGaN films grown on (0001) sapphire by RE-MBE,” C241, No.12, pp.2843-2848,2004.
    43. S. Nakamura, “Growth of InxGa1-xN compound semiconductors and high-power InGaN/AlGaN double heterostructure violet light emitting diodes”,J. Microelectron,vol.25,pp.651-659,1994.
    44. C. a. Chang,C.F.Shin,N.C.Chen,T.Y.Lin,and K. S. Liu,”In-rich InxGa1-xN films by metalorganic vapor phase epitaxy” Appl. Phys. Lett,vol.85,pp.6131-6133,2004.
    45. K. Poochinda, T.C. Chen,T.G.Stoebe, and N. L. Ricker,”Structural,optical and electrical properties of GaN and InGaN films grown by MOCVD”, J.Cryst.Growth, vol.272, pp.460-465,2004.
    46. P.F.Yang,S. R. Jian, Y. S. Lai, C. S. Yang, and R. S. Chen,”Morphological, structural, and mechanical characterizations of InGaN thin films deposited by MOCVD”,J.Alloys and Comp., vol.463,pp.533-538,2008.
    47. B. N. Phanta, J. Li, J. Y. Lin, and H. X. Jiang,”Single phase InxGa1-xN (0.25≤x≤0.63) alloys synthesized by metal organic chemical vapor deposition” ,Appl. Phys. Lett,vol.93,pp.128107,2008.
    48. H. J. Kim, Y. Shin, S. Y. Kwon, S. Choi,S. Hong, C. S. Kim, J. W. Yoon, H. Cheong, and E. Yoon,”Compositional analysis of In-rich InGaN layers grown in GaN templates by metalorganic chemical vapor deposition”, J. Cryst. Growth, vol.310,pp.3004-3008,2008.
    49. Y. Guo, X. L. Liu, H.P.Song, A. L. Yang, X. Q. Xu, G. L. Zheng, H. Y. Wei, S. Y. Yang, Q. S. Zhu,and Z. G. Wang,”a study of indium incorporation in In-rich InGaN grown by MOVPE”,Applied Surface Science,vol.256,pp.3352-3356,2010.
    50. S. Nakamura,”III-V nitride-based light-emitting diodes”,Diamond and Related Materials,vol.5,pp.496-500.1996.
    51. T. Takeuchi, H. Takeuchi, S.Sota, H. Sakai, H. Amano, and I.Akasaki,”Optical properties of strained AlGaN and GaInN on GaN “,Japan J.Appl.Phys.,vol. 36,pp.L177-179,1997.
    52. C. Wetzel, T. Takeuchi,S.Yamaguchi,H. Katoh, H. Amano, and I. Akasaki,”Optical band gap in Ga1-xInxN(0<x<0.2) on GaN by photoreflection spectroscopy”, Appl. Phys. Lett,vol.73, pp.1994-1996,1998.
    53. M. D. McCluskey, C. G. Van de Walle,C. P. Master, L. T.Romano,and N.M. Johnson,”Large band gap bowing of InxGa1-xN alloys” , Appl. Phys. Lett,vol.72,pp.2725-2726,1998.
    54. C. A. Parker, J. Roberts,S.M.Bedairs, M.J.Reeds,S.X.Liu, N.A.E1-Masry,and L.H. Robin,”Optical band gap dependence on composition and thickness of InxGaN1-xN (0<x<0.25) grown in GaN”, Appl. Phys. Lett,vol.75,PP.2566-2568,1999.
    55. J. Wagner,A. Ramakrishnan,D. Behr, M. Maier, N. Herres, M.Kunzer,H.Obloh,and K.H.Bachem,”Composition dependence of the band gap energy of InxGaN1-xN layers on GaN(x≤0.15) grown by metalorganic chemical vapor deposition”,MRS Internet J.Nitride Semicon. Res.,vol.537,pp.G2.8.,1999.
    56. F. B. Naraajo, S. Fernandez,M. A. Sanchez-Garcia,F.Calle, E. Calleja, A. Trampert,and K. H. Ploog,”Structural and optical characterization of thick InGaN layers and InGaN/GaN MQW grown by molecular beam epitaxy.”,Mater. Sci. Eng.,vol.B93,pp.131-134,2002
    57. X.Q.Shen,T.Ide,M.Shimizu,and H. Okumura,”Growh and characterizations of InGaN on N- and Ga-polarity GaN grown by plasma-assisted molecular-beam epitaxy”,J. Cryst. Growth, vol.237-239,pp.1148-1152,2002.
    58. M. Kuurouchi, T. Araki, H. Naoi, T. Yamaguchi, A. Suzuki, and Y. Nanishi,”Growth and properties of In-rich InGaN films grown on (0001) spphire by RE-MBE”, phys.stat.sol.(b), vol.241, PP.2843-2848,2004.
    59. S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, “Thermal annealing effects on p-type Mg-doped GaN films, ” Jpn.J.Appl.Phys., Vol.31, pp.L139-L142(1992).
    60. S. Fujieda, M. Mizuta and Y. Matsumoto, “Growth characterization of low-temperature MOCVD GaN comparison between N2H4 and NH3,” Jpn. J. Appl. Phys., Vol. 26, No. 12, pp. 2067-2701 (1987).
    61. Z. Liu, R. T. Lee and G. B. Stringfellow, “Prolysis of tertiarybutylamine alone and with trimethylgallium for GaN growth,” J. Cryst. Growth, Vol. 191, pp. 1-7 (1998).
    62. E. Bourret-Courchesne, Q. Ye, D. W. Peters, J. Arnold, M. Ahmed, S. J. C. Irvine, R. Kanjolia, L. M. Smith and S. A. Rushworth, “Pyrolysis of dimethylhydrazine and its co-pyrolysis with triethylgallium,” J. Cryst. Growth, Vol. 217, pp.47-54 (2000).
    63. R. T. Lee and G. B. Stringfellow, “Pyrolysis of monomethylhydrazine for organometallic vapor-phase epitaxy (OMVPE) growth, ” J. Cryst. Growth, Vol. 204, pp.247-255 (1999).
    64. U.W. Pohl, K. Knorr, C. Moller, “Low-Temperature metalorganic vapor phase epitaxy(MOVPE) of GaN using Tertiarybutylhydrazine,” Jpn.J.Appl.Phys., Vol. 38, pp.L105-L107(1999).
    65. S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, “High-brightness InGaN blue,green and yellow light-emitting diodes with quantum well structures,” Jpn.J.Appl.Phys., Vol. 34, pp.L797-L799(1995).
    66. Quang Tu Thieu,Yuki Seki,ShIgeyuki Kuboya,Ryuji Katayama,Kentaro Onabe,” MOVPE growth of InN films using 1,1-dimethylhydrazine as a nitrogen precursor “,Journal Of Cryst. Growth,vol.311,pp.2802-2805,2009
    67. 施敏,半導體元件物理與製作技術,第二版,國立交通大學出版社,新竹市 (2002).
    68. IK Jae Lee,Chungjong Yu, Hyun-Joon Shin.Jae-Yong Kim,Young Pak Lee,Tae-Bong Hur,Hyung-Kook Kim,” oxidation study of polycrystalline InN film using in situ X-ray scattering and X-ray photoemission spectroscopy.”Thin Solid Film,vol.515,pp.4691-4695,2007
    69. Cuibai Yang , Xiaoliang Wang,, Hongling Xiao , Xiaobin Zhang , Guoxin Hu, Junxue Ran ,Cuimei Wang, Jianping Li , Jinmin Li , Zhanguo Wang,” Growth temperature dependences of InN films grown by MOCVD” Applied Surface Science,vol. 255 ,pp. 3149–3152,2008.
    70. 黃珮珊“Synthesis of vertically-aligned GaN nanorods using TMGa/TBHy MOCVD system”台灣科技大學碩士論文(2010).

    無法下載圖示 全文公開日期 2018/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE