簡易檢索 / 詳目顯示

研究生: 林新如
Sin-Ru Lin
論文名稱: 含蒽和三蝶烯聚合物的合成及其性質鑑定
Synthesis and Characterization of Anthracene and Triptycene Base Polymers
指導教授: 游進陽
Chin-Yang Yu
口試委員: 施劭儒
王丞浩
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 123
中文關鍵詞: 2,6-蒽2,6-三蝶烯四苯乙烯三苯胺二苯酮聚集誘導發光
外文關鍵詞: 2,6-anthracene, 2,6-triptycene, tetraphenylethylene, triphenylamine, aggregation-induced emission
相關次數: 點閱:220下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要探討含有2, 6位置蒽或三蝶烯和兩種不同構型的四苯乙烯、三苯胺或二苯酮之高分子的合成及性質與鑑定。以鈴木偶合反應做為高分子聚合反應。通過紫外可見吸收光譜和光致發光光譜對高分子進行分析,表明蒽和三蝶烯分別與不同構型的四苯乙烯聚合的四種高分子呈現不同程度的聚集誘導發光特性。而且因為蒽和三蝶烯的平面和立體的特性,他們和不同構型的四苯乙烯聚合所呈現的高分子量子產率的比較是相反的。透過差示掃描量熱儀、熱重分析證明所有不含三苯胺和二苯酮之高分子均表現出良好的熱穩定性,並利用循環伏安法以及原子力顯微鏡對聚合物薄膜進行電化學性質和形貌之分析。


This thesis investigates the synthesis, properties, and characterization of polymers containing 2,6-anthracene or 2,6-triptycene and two different configurations of tetraphenylethylene, triphenylamine, or benzophenone. The polymer was coupling through Suzuki coupling reaction. Analysis of the polymers through UV-visible absorption spectroscopy and photoluminescence spectroscopy revealed that the four polymer combinations of anthracene and tetraphenylethylene with different configurations of triptycene exhibited varying degrees of aggregation-induced emission effects. Moreover, due to the planar and steric characteristics of anthracene and triptycene, their comparisons of polymer quantum yields with different configurations tetraphenylethylene showed opposite trends. Differential scanning calorimetry and thermogravimetric analysis demonstrated excellent thermal stability for all copolymers without triphenylamine and benzophenone. The electrochemical properties and morphology of the polymer films were analyzed using cyclic voltammetry and atomic force microscopy.

Abstract I 中文摘要 II Acknowledgements III Table of Content IV List of Figures VII List of Schemes XII List of Tables XII Chapter 1. Introduction and Aims 12 1.1 Organic Luminophores 12 1.1.1 Fluorescence, Phosphorescence and Jablonski Diagram 12 1.1.2 Relative Fluorescence Quantum Yield (QY) 12 1.2 Aggregation-Caused Quenching (ACQ) and Aggregation-Induced Emission (AIE) Phenomenon 12 1.2.1 Introduction and General Mechanism of ACQ and AIE 12 1.2.2 Tetraphenylethylene (TPE) 12 1.3 Anthracene Derivatives 12 1.4 Triptycene Derivatives (or Homoconjugation) 12 1.5 Suzuki Coupling Reaction 12 1.5.1 Mechanism of Borylation Reaction 12 1.5.2 Mechanism of Suzuki Coupling Reaction 12 1.6 Aim of Project 12 Chapter 2. Synthesis and Characterization 12 2.1 Precursors and Monomers 12 2.1.1 Synthesis and Characterization of 2,6-dibromoanthracene 12 2.1.2 Synthesis and Characterization of 2,6- dibromotriptycene 12 2.1.3 Synthesis and Characterization of (E, Z) 1,2-diphenyl-1,2-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethene 12 2.1.4 Synthesis and Characterization of 2,2'-((2,2-diphenylethene-1,1-diyl)bis(4,1-phenylene))bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) 12 2.1.5 Synthesis and Characterization of N-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)aniline 12 2.1.6 Synthesis and Characterization of bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methanone 12 2.2 Polymers 12 2.2.1 Synthesis and Characterization of P1 12 2.2.2 Synthesis and Characterization of P2 12 2.2.3 Synthesis and Characterization of P3 12 2.2.4 Synthesis and Characterization of P4 12 2.2.5 Synthesis and Characterization of P5 12 2.2.6 Synthesis and Characterization of P6 12 Chapter 3. Results and Discussion 12 3.1 Optical Properties 12 3.2 Thermal Properties 12 3.3 Electrochemical Properties 12 3.4 Morphology 12 Chapter 4. Conclusion 12 Chapter 5. Experimental Section 12 5.1 General Procedures 12 5.2 Synthesis of Precursors and Monomers 12 5.3 Synthesis of Polymers 12 Chapter 6. References 12 Appendix xii AI. 13C NMR Spectrum xii AII. MS Spectrum xii

[1] W. Lu, J. Kuwabara, T. Iijima, H. Higashimura, H. Hayashi, T. Kanbara, Macromolecules 2012, 45, 4128.
[2] S. Rochat, T. M. Swager, ACS Appl. Mater. Interfaces 2013, 5, 4488.
[3] H. Lin, H. Bai, Z. Yang, Q. Shen, M. Li, Y. Huang, F. Lv, S. Wang, Chem. Commun. 2022, 58, 7232.
[4] B. Valeur, M. N. Berberan-Santos, J. Chem. Educ. 2011, 88, 731.
[5] D. Frackowiak, Journal of Photochemistry and Photobiology B-Biology 1988, 2, 399.
[6] K. Rurack, M. Spieles, Anal. Chem. 2011, 83, 1232.
[7] G. A. Crosby, J. N. Demas, J. Phys. Chem. 1971, 75, 991.
[8] J. Luo, Z. Xie, J. W. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740.
[9] C. Zhu, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, ACS Appl. Bio Mater. 2018, 1, 1768.
[10] H. Ma, M. Yang, C. Zhang, Y. Ma, Y. Qin, Z. Lei, L. Chang, L. Lei, T. Wang, Y. Yang, J. Mater. Chem. B. 2017, 5, 8525.
[11] J. Wang, J. Zhang, C. Jiang, C. Yao, X. Xi, ACS Appl. Mater. Interfaces 2021, 13, 57713.
[12] Y. Hong, J. W. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 5361.
[13] H. Zhang, Y. Nie, J. Miao, D. Zhang, Y. Li, G. Liu, G. Sun, X. Jiang, J. Mater. Chem. C 2019, 7, 3306.
[14] Y. Li, Y. Dong, L. Cheng, C. Qin, H. Nian, H. Zhang, Y. Yu, L. Cao, J. Am. Chem. Soc. 2019, 141, 8412.
[15] L. Pan, Y. Cai, H. Wu, F. Zhou, A. Qin, Z. Wang, B. Z. Tang, Mater. Chem. Front. 2018, 2, 1310.
[16] S. Y. Chen, Y. W. Chiu, G. S. Liou, Nanoscale 2019, 11, 8597.
[17] K. H. Ong, B. Liu, Molecules 2017, 22, 897.
[18] Y. Zang, Y. Li, B. Li, H. Li, Y. Yang, RSC Adv. 2015, 5, 38690.
[19] S. Riebe, C. Vallet, F. van der Vight, D. Gonzalez-Abradelo, C. Wolper, C. A. Strassert, G. Jansen, S. Knauer, J. Voskuhl, Chemistry 2017, 23, 13660.
[20] M. H. Chua, K. W. Shah, H. Zhou, J. Xu, Molecules 2019, 24, 2711.
[21] N. L. Leung, N. Xie, W. Yuan, Y. Liu, Q. Wu, Q. Peng, Q. Miao, J. W. Lam, B. Z. Tang, Chemistry 2014, 20, 15349.
[22] K. S. Sharath Kumar, Y. R. Girish, M. Ashrafizadeh, S. Mirzaei, K. P. Rakesh, M. Hossein Gholami, A. Zabolian, K. Hushmandi, G. Orive, F. B. Kadumudi, A. Dolatshahi-Pirouz, V. K. Thakur, A. Zarrabi, P. Makvandi, K. S. Rangappa, Coord. Chem. Rev. 2021, 447, 214135.
[23] D. D. La, S. V. Bhosale, L. A. Jones, S. V. Bhosale, ACS Appl. Mater. Interfaces 2018, 10, 12189.
[24] M. Donnier-Marechal, S. Abdullayev, M. Bauduin, Y. Pascal, M. Q. Fu, X. P. He, E. Gillon, A. Imberty, E. Kipnis, R. Dessein, S. Vidal, Org. Biomol. Chem. 2018, 16, 8804.
[25] M. Chen, L. Yan, Y. Zhao, I. Murtaza, H. Meng, W. Huang, J. Mater. Chem. C 2018, 6, 7416.
[26] D. Udhayakumari, S. Velmathi, P. Venkatesan, S. P. Wu, J. Lumin. 2015, 161, 411.
[27] K. Duraimurugan, M. Harikrishnan, J. Madhavan, A. Siva, S. J. Lee, J. Theerthagiri, M. Y. Choi, Environ. Res. 2021, 194, 110741.
[28] Q. Li, Q. Zhang, Z. Z. Xue, J. X. Hu, G. M. Wang, Inorg. Chem. 2022, 61, 10792.
[29] R. Wang, Y. Liang, G. Liu, S. Pu, RSC Adv. 2020, 10, 2170.
[30] R. Wang, L. Diao, J. Zhang, Z. Chen, S. Pu, Dyes Pigm. 2020, 175, 108112.
[31] Đ. Škalamera, J. Veljković, L. Ptiček, M. Sambol, K. Mlinarić-Majerski, N. Basarić, Tetrahedron 2017, 73, 5892.
[32] Q. Sun, H. Wang, X. Xu, Y. Lu, S. Xue, H. Zhang, W. Yang, Dyes Pigm. 2018, 149, 407.
[33] P. I. Shih, C. Y. Chuang, C. H. Chien, E. W. G. Diau, C. F. Shu, Adv. Funct. Mater. 2007, 17, 3141.
[34] Z. Zhao, P. Lu, J. W. Y. Lam, Z. Wang, C. Y. K. Chan, H. H. Y. Sung, I. D. Williams, Y. Ma, B. Z. Tang, Chem. Sci. 2011, 2, 672.
[35] S. K. Kim, S. Y. Oh, J. W. Park, Thin Solid Films 2008, 517, 1349.
[36] S. K. Kim, Y. I. Park, I. N. Kang, J. W. Park, J. Mater. Chem. 2007, 17, 4670.
[37] S. Zhang, J.-F. Chen, G. Hu, N. Zhang, N. Wang, X. Yin, P. Chen, Organometallics 2021, 41, 99.
[38] Y.-F. Wang, C. Chen, L. Cui, J.-M. Teng, M. Li, H.-Y. Lu, C.-F. Chen, Org. Electron. 2021, 99, 106355.
[39] Y. Huang, D.-H. Zhang, X.-D. Tao, Z. Wei, S. Jiang, L. Meng, M.-X. Yang, X.-L. Chen, C.-Z. Lu, Dyes Pigm. 2022, 204, 110397.
[40] J. Lv, W. Li, J. Li, Z. Zhu, A. Dong, H. Lv, P. Li, B. Wang, Angew. Chem., Int. Ed. 2023, 62, e202217958.
[41] F. K. Leung, F. Ishiwari, Y. Shoji, T. Nishikawa, R. Takeda, Y. Nagata, M. Suginome, Y. Uozumi, Y. M. A. Yamada, T. Fukushima, ACS Omega 2017, 2, 1930.
[42] S. Mondal, N. Das, J. Mater. Chem. A 2015, 3, 23577.
[43] A. Suzuki, Angew. Chem., Int. Ed. 2011, 50, 6722.
[44] N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Letters 1979, 20, 3437.
[45] N. Miyaura, A. Suzuki, J. Chem. Soc., Chem. Commun. 1979, 866.
[46] N. Miyaura, A. Suzuki, Chem. Rev. 2002, 95, 2457.
[47] R. Akhtar, A. F. Zahoor, N. Rasool, M. Ahmad, K. G. Ali, Mol. Divers. 2022, 26, 1837.

無法下載圖示 全文公開日期 2025/08/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE