簡易檢索 / 詳目顯示

研究生: 甘滄弘
Tsang-hung Kan
論文名稱: 生質柴油對引擎機油抗磨耗能力的影響
The effects of biodiesel on the anti-wear performance of engine oils
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 向四海
Su-Hai Hsiang
蘇侃
Hon So
呂道揆
Daw-Kwei Leu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 167
中文關鍵詞: 引擎機油磨耗生質柴油
外文關鍵詞: Engine oil, Wear, Biodiesel
相關次數: 點閱:249下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文目的在於了解生質柴油與柴油對於機油抗磨耗能力的影響。利用經實車測試後之機油(分別以B1與B5作為燃油)與機油中混入不同濃度生質柴油(B100、B50、B5及D100)的混合機油,將此兩類型之機油利用TE77往復磨耗試驗機,以點對平面的接觸方式搭配多種試驗溫度進行往復式磨耗試驗。並且利用SEM、EDS、AES與ESCA等儀器進行磨耗表面形貌觀察與表面膜成分分析。
試驗結果顯示,在相同的燃油稀釋率下,無論是在低溫或高溫,含有生質柴油的機油其抗磨耗能力,均較含純柴油的機油佳。在室溫下,含有生質柴油的機油具有較佳的物理吸附能力,而在高溫時,生質柴油似乎對ZDDP添加劑的反應速率有觸媒效果,能夠提升化合膜成長速率,但生質柴油濃度需適當,B100的生質柴油將會導致磨潤化學磨耗的發生,而三種濃度的生質柴油,以B5生質柴油對機油抗磨耗能力影響最小。


In this thesis, effects of engine oils containing biodiesel and diesel on the performance are discussed. Wear test engine oils can be divided into two types. The first type oils through field test (using B1 or B5 asfuel). The second type is the mixture of diesel (D100) and biodiesel (B100, B50, B5) for different concentration. Wear tests are performed under ball-on-plate contact type under different test temperature conditions by Cameron-Plint TE77 reciprocating wear test rig. After wear tests, the morphology of wear specimens are observed by scanning electron microscopy (SEM). The compositions of the chemical films are identified using an energy dispersive spectrometer (EDS) and an auger electron spectroscopy / electron spectroscopy for chemical analysis (AES/ESCA).
Results show that in the same fuel dilution rate, whether at a low or high temperature, the anti-wear ability of engine oils with biodiesel is better than that of engine oils with diesel oil. At room temperature, engine oils with biodiesel have better physical adsorption capacity; at high temperature biodiesel tends to have catalytic effects with ZDDP additives. This phenomenon would help increase the growth rate of chemical films. However, concentration of the biodiesel should be controlled because engine oil with B100 causes tribochemical wear. Among three different concentration biodiesels, anti-wear ability of engine oil with B5 is higher.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 1 1.1 研究動機 1 1.2 模型構想簡介 2 第二章 文獻回顧 4 2.1 引擎機油功能與組成 4 2.1.1 引擎機油的功能 4 2.1.2引擎機油的組成 5 2.1.2.1 基礎油的種類 5 2.1.2.2 添加劑的種類 8 2.2 機油劣化原因與研究 13 2.2.1 機油劣化原因 13 2.2.2 機油劣化相關研究 14 2.3 生質油的種類與研究 16 2.4潤滑模式 19 2.5摩擦與磨耗機構 23 2.5.1 摩擦型態 23 2.5.2 磨耗機構 26 2.6 固體表面與接觸型態 31 2.6.1 表面粗糙度 31 2.6.2接觸應力計算 32 第三章 實驗儀器與方法 34 3.1 實驗儀器 34 3.2 分析儀器 40 3.3 試片規格 41 3.4 試驗用油 43 3.5 試驗條件 45 3.6 磨耗體積計算 46 3.7 試驗步驟 47 第四章 結果與討論 51 4.1實車測試之機油在不同溫度磨耗試驗下摩擦行為與磨耗型態 52 4.1.1室溫磨耗試驗 52 4.1.2恆溫70℃磨耗試驗 59 4.1.3恆溫120℃磨耗試驗 67 4.1.4恆溫150℃磨耗試驗 77 4.1.5恆溫200℃磨耗試驗 92 4.1.6 實車測試後之機油抗磨耗能力劣化評估 102 4.2自行預混之機油在不同溫度磨耗試驗下摩擦行為與磨耗型態 103 4.2.1 室溫磨耗試驗 104 4.2.2 恆溫150℃試驗 110 4.2.3 恆溫200℃試驗 120 4.2.4 生質柴油濃度對機油抗磨耗能力的影響評估 131 4.3 化合膜成份分析 133 4.3.1 AES分析 133 4.3.2 ESCA分析 140 4.4 引擎機油在邊界潤滑狀態下的抗磨耗機制 144 第五章 結果與建議 146 5.1 結論 146 5.2 建議 147 參考文獻 149

1.A. Bhattacharya, T. Singh and V.K. Verma, “EP activity evaluation of cyclic disulphides using ball bearing of different compositions”, Tribology International, Vol.23, pp.265-361, 1990
2.http://www.ld.cpc.com.tw/oilinfo/engineoil1.htm
3.柯清水, “石油化學概論”, 正文書局, 1980.
4.林榮盛, “潤滑學”, 全華科技圖書股份有限公司, 1987.
5.溫詩鑄, “摩擦學原理”, 北京清華大學出版社, 1990.
6.櫻井俊男, “新版石油製品添加劑”, 幸書房, 1986.
7.A.M. Barnes, K.D. Bartle and V.R.A. Thibon, “A review of zinc dialkyldithiophosphates (ZDDPS):characterisation and role in the lubricating oil”, Tribology International, Vol.34, pp.389-395, 2001.
8.J.H. Gilks, “Antioxidants for petroleum products”, J. Inst. Petrol, Vol.50, pp.491, 1964.
9.L.R. Mahoney, “Antioxidants”, Angew. Chem. Int. Ed, Vol.8, pp.547, 1969.
10.H. Spedding and R.C. Coy, “The antiwear mechanism of zddp’s part1”, Tribology, Vol.15, pp.9-12, 1982.
11.R.C. Coy and R.B. Jones, “The thermal degradation and E.P. performance of zinc dialkydithiophosphate additives in white oil”, ASLE Trans, Vol.24, pp.77-90, 1981.
12.P.A. Willermet, S.K. Kandah, W.O.Siegl and R.E. Chase, “The influence of molecular oxygen on wear protection by surface active compounds”, Tribology Transactions, Vol.26, pp.523-531, 1983.
13.P.A. Willermet and S.K. Kandah, “Some observations on the role of oxygen in lubricated wear”, Lubrication Science, Vol.5, pp.129-147, 1993.
14.P.A. Willermet, L.R. Mahoney and C.M. Haas, “The effects of antioxidant reactions on the wear behaviour of a zinc dialkyldithiophosphate”, Tribology Transactions, Vol.22, pp.301-306, 1979.
15.L. Taylor, A. Dratva and H.A. Spikes, “Friction and wear behavior of zinc dialkyldithiophosphate additive”, Tribology Transactions, Vol.43, pp.469-479, 2000.
16.J.M. Georges, J.M. Martin, T. Mathia, Ph. Kapsa, G. Meille and H. Montes, “Mechanism of boundary lubrication with zinc dithiophosphate”, Wear, Vol.53, pp.9-34, 1979.
17.林原慶, “ZDDP添加劑在邊界潤滑狀態下的抗磨耗研究”, 國立台灣大學, 1993.
18.楊思裕, “柴油引擎(下)”, 全華科技圖書股份有限公司, 1987.
19.S.K. Singh, A.K. Agarwal and M. Sharma, “Experimental investigations of heavy metal addition in lubricating oil and soot deposition in an EGR operated engine”, Applied Thermal Engineering, Vol.26, pp.259-266, 2006.
20.S. Aldajah, O.O. Ajayi, G.R. Fenske and I.L. Goldblatt, “Effect of exhaust gas recirculation (EGR) contamination of diesel engine oil on wear”, Wear, Vol.263, pp.93-98, 2007.
21.S. George, S. Balla, V. Gautam1 and M. Gautam, “Effect of diesel soot on lubricant oil viscosity”, Tribology International, Vol.40, pp.809-818, 2007.
22.M. Diaby, M. Sablier, A. Le Negrate, M. El Fassi and J. Bocquet, “Understanding carbonaceous deposit formation resulting from engine oil degradation”, Carbon, Vol.47, pp.355-366, 2009.
23.G. Kanthe, “The biodiesel handbook”, AOCS PRESS, Illinois, pp.1-3, 2004.
24.C.A. Sharp, S.A. Howell and J. Jobe, “The effect of biodiesel fuels on transient emissions from modern diesel engines, part i regulated emissions and performance”, SAE technical papers, 2000-01-1967, 2000.
25.V. Camobreco, J. Sheehan, J. Duffield and M. Graboski, “Understanding the life-cycle costs and environmental profile of biodiesel and petroleum diesel fuel”, SAE technical papers, 2000-01-1487, 2000.
26.M.A. Kalam and H.H. Masjuki, “Biodiesel from palmoil - An analysis of its properties and potential”, Biomass and Bioenergy, Vol.23, pp.471-479, 2002.
27.K.S. Wain, J.M. Perez, E. Chapman and A.L. Boehman, “Alternative and low sulfur fuel options: Boundary lubrication performance and potential problems”, Tribology International, Vol.38, pp.313-319, 2005.
28.A.K. Agarwal, J. Bijwe and L.M. Das, “Wear assessment in a biodiesel fueled compression ignition engine”, Journal of Engineering for Gas Turbines and Power, Vol.125, pp.820-826, 2003.
29.A.K. Agarwal, J. Bijwe and L.M. Das, “Effect of biodiesel utilization of wear of vital parts in compression ignition engine”, Journal of Engineering for Gas Turbines and Power, Vol.125, pp.604-611, 2003.
30.A. Adhvaryu, S.Z. Erhan and J.M. Perez, “Tribological studies of thermally and chemically modified vegetable oils for use as environmentally friendly lubricants”, Wear, Vol.257, pp. 359-367, 2004.
31.M.A. Maleque, H.H. Masjuki and A.S.M.A. Haseeb,“Effect of mechanical fators on tribological properties of palm oil methyl ester blended lubricant”, Wear, Vol.239, pp.117-125, 2000.
32.W. Castro, D.E. Weller, K. Cheenkachorn and J.M. Perez, “The effect of chemical structure of basefluids on antiwear effectiveness of additives”,Tribology International, Vol.38, pp.321-326, 2005.
33.A.K. Agarwal, “Experimental investigations of the effect of biodiesel utilization on lubricating oil tribology in diesel engines”, SAGE, Vol.219, pp.703-713, 2005.
34.L. Yüksek, H. Kaleli, O. Özener and B. Özoğuz, “The effect and comparison of biodiesel-diesel fuel on crankcase oil, diesel engine performance and emissions”, FME Transactions, Vol.37, pp.91-97, 2009.
35.D. Dowson and G.R. Higginson, “Elastohydrodynamic in lubrication”, Pergamon Press, 1977.
36.李冠宗, “潤滑學”, 高立圖書有限公司, 1990.
37.T.R. Sem, “Investigation of Injector Tip Deposits on Transport Refrigeration Units Running on Biodiesel Fuel”, SAE technical papers, 2004-01-0091, 2004.
38.A. Adhvaryu, S.Z. Erhan and J.M. Perez, “Tribological studies of thermally and chemically modified vegetable oils for use as environmentally friendly lubricants”, Wear, Vol.257, pp. 359-367, 2004.
39.K.H.Z. Gahr, “Microstructure and Wear of Materials”, Tribology Series 10, Elsevier Press, 1987.
40.DIN50320:Verschleiβ-Begriffe, Analyse Von Verschlei β Vorgangen, Gliederung des Verschlei β gebietes. Beuth Verlag, Berlin, 1979.
41.E. Rabinowicz, “An adhesive wear model based on variations in strength values”, Wear, Vol.63, pp.175-181, 1980.
42.H. Czichos, “Tribology, a systems approach to the science and technology of friction, lubrication and wear”, Tribology Series 1, Elsevier Press, 1978.
43.N.P. Suh, “The Delamination Theory of Wear”, Wear, Vol.25, pp. 111-124, 1973.
44.Hertz, “Uber die beruhrung fester elastischer korper, (on the contact of elastic solids)”, J. Reine and Angewandte Mathe Matik, Vol.92, pp.156-171, 1881.
45.B.J. Hamrock and D. Dowson, “Ball bearing lubrication the elastohydrodynamics of elliptical contacts”, John Willey & Sons, 1981.
46.H. Hertz, “Miscellaneous Papers”, Jones & Schott, Macmillan, London, 1896.
47.John F. Moulder ,William F. Stickle ,Peter E. Sobol and Kenneth D.Bomben,“Handbook of X-ray Photoelectron Spectroscopy”, Physical Electronics, Inc. , 1995.
48.J.F. Zhou, Z.S.Wu, Z.J.Zhang, W.M.Liu and Q.J.Xue, “Tribological behavior and lubricating mechanism of Cu nanoparticles in oil”, Tribology Letters,Vol.8, pp.213-218,2000

無法下載圖示 全文公開日期 2014/07/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE