簡易檢索 / 詳目顯示

研究生: 莊詠棠
Yong-tang Jhuang
論文名稱: 生質柴油副產物甘油再利用製程之設計與控制
Design and Control of a Process for Glycerol Utilization.
指導教授: 錢義隆
I-Lung Chien
口試委員: 汪上曉
Shang-Hsiao Wong
周宜雄
Yi-Shyong Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 140
中文關鍵詞: 生質柴油甘油再利用甘油醚化程序設計整廠控制
外文關鍵詞: biodiesel, glycerol utilization, glycerol etherification, process design, plantwide control
相關次數: 點閱:275下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於近年來生質柴油大量生產,使得發展其副產物甘油的再利用製程越來越受到重視,而本研究係探討其中一種甘油應用為甘油與異丁烯醚化反應產生第三丁基甘油醚類(GTBEs),而產物中的雙醚及三醚能夠做為汽油或燃料的添加劑,增加辛烷值及抗爆震等功用。
整廠之設計首先選定合適的熱力學與動力學模式來描述程序之相平衡,採用Behr and Obendorf(2002)所回歸之Power Law反應速率模式及動力參數,並使用Aspen Plus V7.1進行穩態模擬。本研究利用多階段反應進行醚化反應製程,並延用Behr and Obendorf(2002)之整廠架構進行討論及模擬,最後提出系統最適化流程,以最小總年度成本(TAC)為目標。
此外,利用Aspen DynamicsTM進行動態模擬;在系統控制方面,使用基本的控制環路,並針對最敏感之塔板進行溫度控制,觀察受到干擾之情形,進而提出不同架構進行探討;藉由所提出之架構能夠排除整廠程序±20%之煉量擾動及5%、10%之組成干擾,以期得到良好之控制效果及維持最終產物不純物規範,驗證此整廠程序操作之可行性。


Due to the tremendous development for the production of biodiesel , the process of utilizating glycerol ( as by-product in biodiesel process) has gained a lot of attention in recent years. One of the various possibilities that this work explores is on glycerol etherification with isobutene to produce glycerol tertiary butyl ethers(GTBEs). The products of the etherification can be a mono-ether, a di-ether , or a tri-ether, where the “higher ethers”(di- and tri-) can be used as an octane booster for gasoline or as diesel additive.

This work chooses the suitable models to describe the thermodynamics and kinetics for the process design, and then simulates the process by using Aspen Plus V7.1. The series of reactors are used for the reaction system, and the overall process design adopt the concept by Behr and Obendorf (2002). Design objective is to minimize the total annual cost (TAC) by varying dominant design variables.

The dynamics and control of the overall process are also investigated in this work. The proposed control strategy is able to maintain product purity despite ±20% production rate changes and 5 to 10% composition disturbances.

致謝 Ⅰ 中文摘要 Ⅱ 英文摘要 Ⅲ 目錄 Ⅳ 圖目錄 Ⅵ 表目錄 XI 第一章、 緒論 1 1.1前言 1 1.2文獻回顧 6 1.2.1醚化反應性之研究 6 1.2.2甘油製甘油醚製程 8 1.3研究動機 11 1.4組織章節 12 第二章、 熱力學與動力學模式 13 2.1前言 13 2.2成份之建立 14 2.3熱力學模式建立與參數 15 2.4動力學模式建立與參數 20 第三章、 程序模擬與最適化設計 23 3.1前言 23 3.2甘油醚化反應器設計 24 3.2.1單一反應器 24 3.2.2雙重反應器 26 3.2.3三重反應器 29 3.3甘油醚化製程整廠設計 32 3.3.1整廠設計程序描述 33 3.3.2甘油醚化製程最適化流程設計 43 3.4甘油醚化製程後續探討 59 3.4.1產物選擇率之探討 59 3.4.2反應溫度之探討 60 第四章、動態模擬 62 4.1前言 62 4.2敏感度分析 63 4.3甘油製甘油醚整廠製程之控制架構 65 4.4干擾排除 68 第五章、結論 92 參考文獻 93 附錄A 計算年度總成本使用之公式 97 附錄B 動態控制響應結果圖 105

[中文]
[1] 沈胤亨,「生質柴油製程之整廠程序設計與控制」,國立台灣科大學化學工程所碩士論文(2008) .
[2] 郭子良,「利用固體酸觸媒同時進行酯化與轉酯化反應製造生質柴油之整廠程序設計」,國立台灣大學化學工程所碩士論文(2009).
[3] 許贇珍,歐先金,郭妮妮,和劉德華,「生物柴油副產物甘油的高付加值利用」,過程工程學報,8, 4, 695-702 (2008).
[英文]
[1] Behr, A., and Obendorf, L., “Development of a Process For the Acid-Catalyzed Etherification of Glycerine and Isobutene Forming Glycerine Tertiary Butyl Ethers,” Eng. Life Sci.2, 7, 185-189 (2003).
[2] Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J., and Lindner, F., “Improved Utilization of Renewable Resources: New Important Derivatives of Glycerol,”Green Chem., 10, 1-140 (2007).
[3] Behr, A.; Westfechtel, A., and Gomes, J. P., “Catalytic Processes for Technical Use of Natural Fats and Oils,” Chem. Eng. Technol., 31, 700-714 (2008).
[4] Bildea, C. S.; Brunchi, C., and Bozga G., “Analysis of Chemical Routes and Processes for Production of Glycerol Ethers,” Computer-Aided Chem. Eng., 26, 99-104 (2009).
[5] Bradshaw, G. B., and Meuly, W. C.,”Process of Making Pure Soaps,” U.S.patent, 2271619, E.I. DuPont de Nemours & Company, Wilmington, Delaware, USA, (1942).
[6] Bradshaw, G. B., and Meuly, W. C., “Preparation of detergents,” U.S.patent, 2360844, E.I. DuPont de Nemours & Company, Wilmington, Delaware, USA, (1944).
[7] Di Serio, M.; Casale, L. ; Tesser, R.; Santacesaria, E., “New Process for the Production of Glycerol tert-Butyl Ethers,” Energy Fuels ., article in press (2010).
[8] Gupta, V. P., “Glycerine ditertiary butyl ether preparation,” U.S. patent, 5 476971 (1995) to ARCO Chem. Technology, L.P..
[9] Haas, M. J.; McAloon, A. J.; Yee, W. C., and Foglia, T. A.,”A Process Model to Estimate Biodiesel Production Costs,” Bioresour. Technol., 97 ,4, 671-678 (2006).
[10] Jaecker-Voirol, A.; Durand, I.; Hillion, G.; Delfort, B.; and Montagne, X. “Glycerin for New Biodiesel Formilation,” Oil Gas Sci. Technol., 63, 395-404 (2008).
[11] Jérôme, F.; Pouilloux, Y.,and Barrault, J.,” Rational Design of Solid Catalysts for the Selective Use of Glycerol as a Natural Organic Building Block,” ChemSusChem,1,586-613 (2008).
[12] Karinen, R. S. and Krause, A. O. I., “New Biocomponents from Glycerol,” Appl. Catal. A., 306, 128-133 (2006).
[13] Kesling, S.; Karas, L. J., and Liotta, F. J., “Diesel fuel,” U.S. Patent, 5 308 365 (1994), to ARCO Chem. Technology, L.P..
[14] Klepá ová K.; Mravec, D., and Bajus, M., “Tert-Butylation of Glycerol Catalyzed by Ion-exchange Resins,” Appl. Catal., A, 294, 141–147 (2005).
[15] Klepá ová K.; Mravec, D., Kaszonyi, A. and Bajus, M.,”Etherification of Glycerol and Ethylene Glycol by Isobutylene,” Appl. Catal., A, 328, 1–13 (2007).
[16] Marchionna, M.; Patrini, R.; Sanfilippo, D.; Paggini, A.; Giavazzi, F., and Pellegrini, L., ”From Natural Gas to Oxygenates for Cleaner Diesel Fuels,” Stud. Surf. Sci. Catal., 136, 489-494, (2001).
[17] Melero, J. A.; Vicente, G.; Morales, G.; Paniagua, M.; Mereno, J. M.; Roldan, R.;Ezquerro, A., and Perez, C., “Acid-catalyzed Etherification of Bio-glycerol and Isobutylene over Sulfonic Mesostructures Silicas,” Appl. Catal. A., 346, 44-51 (2008).
[18] Melero, J. A.; Vicente, G.; Morales, G.; Paniagua, M., and Bustamante J., “Oxygenated Compoumds Derived from Glycerol for Biodiesel Formulation: Influence on EN 14214 Quality Parameters ,” Fuel, article in press, (2010).
[19] Noureddini, H.; Dailey, W. R.,and Hunt, B. A., ”Production of Ethers of Glycerol From Crude Glycerol- The By-product of Biodiesel Production,” Department of Chemical Engineering, University of Nebraska-Lincoln (1998).
[20] Noureddini, H., “Process for producing biodiesel fuel with reduced viscosity and a cloud point below thirty-two (32) degrees Fahrenheit,” U.S. Patent, 6 015 440 (2000), to Board of Regents of the University of Nebraska.
[21] Noureddini, H., “System and process for producing biodiesel fuel with reduced viscosity and a cloud point below thirty-two (32) degrees Fahrenheit,” U.S. Patent, 6 174 501 B1, (2001), to The Board of Regents of the University of Nebraska.
[22] Pagliaro, M.; Ciriminna, R.; Kimura H.; Rossi, M., and Pina C. D.,”From Glycerol to Value-added Products,” Angew. Chem. Int. Ed., 46, 4434-4440 (2007).
[23] Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M., and Pina, C. D.,”Recent Advances in the Conversion of Bioglycerol into Value-added Products,” Eur. J. Lipid Sci. Technol., 111, 788-799 (2009).
[24] Rahmat, N.; Abdullah, A. Z.; Mohamed, A. R., “Recent Progress on Innovative and Potential Technologies for Glycerol Transformation into Fuel Additives: A Critical Review,” Renewable Sustainable Energy Rev., 14, 987-1000 (2010).
[25] Sheehan, J.; Camobreco, V.; Duffield, J.; Graboski, M., and Shapouri, H.,”An Overview of Biodiesel and Petroleum Diesel Life Cycles,” NREL/TP-580-24772, National Renewable Energy Laboraory (1998). (Available electronically at http://www.doe.gov/bridge).
[26] Wessendorf , R., ” Glycerinderivate als Kraftstoffkomponenten,” Erdöl & Kohle, Erdgas, Petrochemie, 48, 138-142, (1995).
[27] Zheng, Y.; Chen, Xiaolong; and Shen Yinchu, ”Commodity Derived from Glycerol, an Important Biorefinery Feedstock,” Chem. Rev. ,108 ,5253-5277, (2008).
[28] Zhou, C. H.; Beltramini, J. N.; Fan Y. X.; and Lu, G. Q., “Chemoselective Catalytic Conversion of Glycerol as a Biorenewable Source to Valuable Commodity Chemicals,” Chem. Soc. Rev., 37, 527-549 (2007).

QR CODE