簡易檢索 / 詳目顯示

研究生: 胡書瑋
Shu-Wei Hu
論文名稱: 建構反射式位移激發拉曼差分光譜系統
Construction of reflective Shifted Excitation Raman Difference Spectroscopy (r-SERDS) System
指導教授: 林鼎晸
Ding-Zheng Lin
口試委員: 陳品銓
Pin-Chuan Chen
劉沂欣
Yi-Hsin Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 52
中文關鍵詞: 位移激發拉曼差分光譜拉曼光譜反射式光路拉曼探頭
外文關鍵詞: Shifted Excitation Raman Difference Spectroscopy, Raman spectroscopy, Reflective light path, Portable Raman probe
相關次數: 點閱:166下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究建置了一套新型拉曼光譜量測系統,結合位移激發拉曼差分光譜技術(SERDS)與反射式拉曼探頭(RRP),有效地解決了在拉曼光譜分析中常見的背景訊號干擾問題,並提高了拉曼特徵峰的訊噪比,使光譜數據的判讀更為清晰與準確。
    位移激發拉曼差分光譜技術(SERDS)是一種有效區分拉曼特徵訊號與背景訊號的方法,透過兩個略微位移的雷射激發波長,在同個樣品位置連續獲取兩張光譜圖,經過SERDS演算法重建後得到沒有背景干擾的拉曼光譜圖。比較了三種扣除背景訊號的方法,結果發現經過SERDS重建的光譜結果不會受到外界光源的影響。同時,比較了原始光譜與重建光譜的光譜結果,發現重建光譜不僅保留了原始光譜的光譜特性(半高寬),並且在訊噪比上也有了顯著的提升,即使在強大的螢光或環境光背景訊號干擾下,一樣可以透過重建後的拉曼光譜觀察樣品的拉曼訊號。
    在具體應用中,成功辨識了毒奶粉中的三聚氰胺、含有非法添加物蘇丹紅1號的辣椒粉,以及夾鏈袋中的PE塑膠與其使用的染料成分。另外,透過量測不同重量百分比濃度的樣品,建立濃度曲線圖,說明自建的量測系統可以進行定性且定量的量測分析。展示了該量測系統在實際應用的實用性。此外本系統硬體沿用實驗室蔡凱鈞學長開發的多波長反射式探頭的光路,並與784/785 nm雙波長雷射結合實現反射式-位移激發拉曼差分光譜系統(r-SERDS)。本系統可消除螢光背景干擾,並保有低能量密度、高入射光與光譜收光效率的特性。其大雷射光斑的設計除了可容許較高的雷射激發能量換取更好的訊號強度,也可以解決待測物分布不均或SERS基板上微結構尺寸不均勻造成拉曼光譜量測強度不一的問題。
    本研究建置的新型拉曼光譜量測系統,不僅提高了拉曼光譜分析的準確性和量測效率,搭配反射式探頭的使用針對具有能量閥值上限、具有強烈螢光背景樣品以及受限的量測環境都可進行正確且快速的量測。


    This study has developed a new Raman spectroscopy measurement system that combines Shifted Excitation Raman Difference Spectroscopy (SERDS) with a Reflective Raman Probe (RRP). This effectively addresses the common issue of background signal interference in Raman spectroscopy analysis and improves the signal-to-noise ratio (SNR) of Raman characteristic peaks, making the spectral data interpretation clearer and more accurate.
    Shifted Excitation Raman Difference Spectroscopy (SERDS) is an effective method for distinguishing Raman characteristic signals from background signals. By using two slightly shifted laser excitation wavelengths to acquire two spectra at the same sample location continuously, SERDS reconstructs Raman spectra that have the background signals subtracted, leaving only the pure Raman characteristic peaks of the sample. Three methods for subtracting background signals were compared, and the results showed that the spectra reconstructed through SERDS were not affected by external light sources. By comparing the original spectra with the reconstructed spectra obtained through SERDS, it was found that they not only retained the spectral characteristics (FWHM) of the original spectra but also significantly improved the SNR. Even under strong fluorescence or environmental light background signal interference, the Raman signals of the samples can still be observed through the reconstructed Raman spectra.
    In practical applications, the system successfully identified melamine in contaminated milk powder, Sudan I in adulterated chili powder, and the components of PE plastic and its dye in zipper bags. Additionally, by measuring samples with different weight percentages, a concentration curve was established, demonstrating that the measurement system can perform both qualitative and quantitative analysis. This showcases the practicality of the measurement system in real-world applications.
    Moreover, the hardware of this system adopts the optical path of the multi-wavelength reflective Raman probe developed by former lab member Tsai Kai-Jiun and combines it with a 784/785 nm dual-wavelength laser to achieve a reflective Shifted Excitation Raman Difference Spectroscopy system (r-SERDS). This setup can eliminate fluorescence background interference and maintain characteristics such as low energy density, high incident light efficiency, and efficient spectral collection. The design of a large laser spot allows for higher laser excitation energy to achieve better signal intensity and solves the problem of inconsistent Raman measurement intensities caused by uneven analyte distribution or uneven microstructure sizes on SERS substrates.
    The new Raman spectroscopy measurement system established in this study not only improves the accuracy and efficiency of Raman spectroscopy analysis but also, with the use of the reflective probe, enables accurate and rapid measurements in samples with energy threshold limits, strong fluorescence backgrounds, and restricted measurement environments.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1拉曼光譜技術與挑戰 1 1.2位移激發拉曼差分光譜 (SERDS) 2 1.3研究目的 2 1.4文獻回顧 4 第二章 研究方法 8 2.1實驗設備 9 2.1.1雙波長雷射模組與光譜儀系統 9 2.1.2光機系統 9 2.1.3觸控式光功率能量計 10 2.2建置拉曼光譜量測系統 10 2.2.1建立雷射控制系統 11 2.2.2建立拉曼光譜儀控制系統 12 2.2.3建立SERDS演算法 14 2.2.4比較SERDS重建光譜與原始光譜的光譜數據 15 2.3扣除拉曼光譜圖背景訊號方法比較 16 2.4穿透式光路與反射式光路系統 17 2.5備製量測樣品 19 2.5.1奶粉、奶粉與三聚氰胺混合粉末 19 2.5.2辣椒粉與蘇丹紅1號 20 2.5.3不同顏色的夾鏈袋 21 第三章 量測系統軟體建立 22 3.1軟體工具 22 3.2軟體介紹 22 3.3儀器介面與系統運作流程 23 3.4拉曼光譜重建方法 27 3.4.1資料正規化 27 3.4.2 最小平方法與非對稱最小平方法 27 3.4.3 拉曼光譜重建流程 28 第四章 結果與討論 32 4.1驗證自建量測系統 32 4.1.1雙波長雷射模組實際雷射波長 32 4.1.2確認自建量測系統光譜圖結果 32 4.1.3比較原始光譜與重建光譜的光譜數據 33 4.2扣除拉曼光譜圖背景訊號方法比較 34 4.3樣品量測結果 37 4.3.1市售奶粉、奶粉與三聚氰胺拉曼光譜與濃度曲線 38 4.3.2辣椒粉與蘇丹紅1號拉曼光譜圖與破壞實驗結果 41 4.3.3不同顏色夾鏈袋拉曼光譜圖結果 45 第五章 結論與未來展望 47 5.1結論 47 5.2未來展望 47 參考文獻 48 附錄A 51 附錄B 52

    1. C. Chen, F. Peng, Q. Cheng, and D. Xu, "Raman Spectra of Sudan Red Dyes and the Fluorescence Background Removal," in 2010 4th International Conference on Bioinformatics and Biomedical Engineering (IEEE, 2010), pp. 1–4.
    2. M. T. Gebrekidan, C. Knipfer, F. Stelzle, J. Popp, S. Will, and A. Braeuer, "A shifted‐excitation Raman difference spectroscopy (SERDS) evaluation strategy for the efficient isolation of Raman spectra from extreme fluorescence interference," J. Raman Spectrosc. 47(2), 198–209 (2016).
    3. F. Korinth, A. S. Mondol, C. Stiebing, I. W. Schie, C. Krafft, and J. Popp, "New methodology to process shifted excitation Raman difference spectroscopy data: a case study of pollen classification," Sci. Rep. 10(1), 11215 (2020).
    4. K. Sowoidnich, S. Vogel, M. Maiwald, and B. Sumpf, "Determination of Soil Constituents Using Shifted Excitation Raman Difference Spectroscopy," Appl. Spectrosc. 76(6), 712–722 (2022).
    5. M. Kasha, "Characterization of electronic transitions in complex molecules," Discuss. Faraday Soc. 9, 14 (1950).
    6. M. Maiwald, A. Müller, B. Sumpf, and G. Tränkle, "A portable shifted excitation Raman difference spectroscopy system: device and field demonstration: Portable SERDS system: device and field demonstration," J. Raman Spectrosc. 47(10), 1180–1184 (2016).
    7. K. Sowoidnich, M. Oster, K. Wimmers, M. Maiwald, and B. Sumpf, "Shifted excitation Raman difference spectroscopy as enabling technique for the analysis of animal feedstuff," J. Raman Spectrosc. 52(8), 1418–1427 (2021).
    8. J.-F. Ye, H.-Y. Wei, X.-H. Qi, Y. Li, S. Wang, Y. Zhao, and M.-Q. Zou, "Dual-wavelength Rapid Excitation Raman Difference Spectroscopy System for Direct Detection of Ethanol in Illegal Beverages," Chin. J. Anal. Chem. 49(8), e21151–e21159 (2021).
    9. F. Korinth, T. A. Shaik, J. Popp, and C. Krafft, "Assessment of shifted excitation Raman difference spectroscopy in highly fluorescent biological samples," The Analyst 146(22), 6760–6767 (2021).
    10. C. Xie and Y. Li, "Confocal micro-Raman spectroscopy of single biological cells using optical trapping and shifted excitation difference techniques," J. Appl. Phys. 93(5), 2982–2986 (2003).
    11. J. Lin, D. Lin, S. Qiu, Z. Huang, F. Liu, W. Huang, Y. Xu, X. Zhang, and S. Feng, "Shifted-excitation Raman difference spectroscopy for improving in vivo detection of nasopharyngeal carcinoma," Talanta 257, 124330 (2023).
    12. L. Matthies, M. T. Gebrekidan, J. F. Tegtmeyer, N. Oetter, M. Rohde, T. Vollkommer, R. Smeets, W. Wilczak, F. Stelzle, M. Gosau, A. S. Braeuer, and C. Knipfer, "Optical diagnosis of oral cavity lesions by label-free Raman spectroscopy," Biomed. Opt. Express 12(2), 836 (2021).
    13. M. T. Gebrekidan, R. Erber, A. Hartmann, P. A. Fasching, J. Emons, M. W. Beckmann, and A. Braeuer, "Breast Tumor Analysis Using Shifted-Excitation Raman Difference Spectroscopy (SERDS)," Technol. Cancer Res. Treat. 17, 1–11 (2018).
    14. C. Knipfer, J. Motz, W. Adler, K. Brunner, M. T. Gebrekidan, R. Hankel, A. Agaimy, S. Will, A. Braeuer, F. W. Neukam, and F. Stelzle, "Raman difference spectroscopy: a non-invasive method for identification of oral squamous cell carcinoma," Biomed. Opt. Express 5(9), 3252 (2014).
    15. P. Strobbia, V. Cupil-Garcia, B. M. Crawford, A. M. Fales, T. J. Pfefer, Y. Liu, M. Maiwald, B. Sumpf, and T. Vo-Dinh, "Accurate in vivo tumor detection using plasmonic-enhanced shifted-excitation Raman difference spectroscopy (SERDS)," Theranostics 11(9), 4090–4102 (2021).
    16. "A New Player in Forensic Analysis: 1064-nm Dispersive Raman | American Laboratory," https://www.americanlaboratory.com/Blog/139329-A-New-Player-in-Forensic-Analysis-1064-nm-Dispersive-Raman/.
    17. D. Wei, S. Chen, and Q. Liu, "Review of Fluorescence Suppression Techniques in Raman Spectroscopy," Appl. Spectrosc. Rev. 50(5), 387–406 (2015).
    18. J. Kiefer and M. Kaspereit, "Determination of the Raman depolarization ratio in optically active samples," Anal Methods 5(3), 797–800 (2013).
    19. S. Christesen, "Improved Raman sensitivity using polarization analysis," in A. W. Fountain Iii and P. J. Gardner, eds. (2010), p. 76651B.
    20. N. Everall, T. Hahn, P. Matousek, A. W. Parker, and M. Towrie, "Picosecond Time-Resolved Raman Spectroscopy of Solids: Capabilities and Limitations for Fluorescence Rejection and the Influence of Diffuse Reflectance," Appl. Spectrosc. 55(12), 1701–1708 (2001).
    21. M. C. H. Prieto, P. Matousek, M. Towrie, A. W. Parker, M. Wright, A. W. Ritchie, and N. Stone, "Use of picosecond Kerr-gated Raman spectroscopy to suppress signals from both surface and deep layers in bladder and prostate tissue," J. Biomed. Opt. 10(4), 044006 (2005).
    22. K. Hamasha, Q. I. Mohaidat, R. A. Putnam, R. C. Woodman, S. Palchaudhuri, and S. J. Rehse, "Sensitive and specific discrimination of pathogenic and nonpathogenic Escherichia coli using Raman spectroscopy—a comparison of two multivariate analysis techniques," Biomed. Opt. Express 4(4), 481 (2013).
    23. K. S. Kalasinsky, T. Hadfield, A. A. Shea, V. F. Kalasinsky, M. P. Nelson, J. Neiss, A. J. Drauch, G. S. Vanni, and P. J. Treado, "Raman Chemical Imaging Spectroscopy Reagentless Detection and Identification of Pathogens: Signature Development and Evaluation," Anal. Chem. 79(7), 2658–2673 (2007).
    24. F. Ariese, H. Meuzelaar, M. M. Kerssens, J. B. Buijs, and C. Gooijer, "Picosecond Raman spectroscopy with a fast intensified CCD camera for depth analysis of diffusely scattering media," Analyst 134(6), 1192 (2009).
    25. M. Kögler and B. Heilala, "Time-gated Raman spectroscopy – a review," Meas. Sci. Technol. 32(1), 012002 (2020).
    26. A. P. Shreve, N. J. Cherepy, and R. A. Mathies, "Effective Rejection of Fluorescence Interference in Raman Spectroscopy Using a Shifted Excitation Difference Technique," Appl. Spectrosc. 46(4), 707–711 (1992).
    27. S. Guo, O. Chernavskaia, J. Popp, and T. Bocklitz, "Spectral reconstruction for shifted-excitation Raman difference spectroscopy (SERDS)," Talanta 186, 372–380 (2018).
    28. P. H. C. Eilers and H. F. M. Boelens, "Baseline Correction with Asymmetric Least Squares Smoothing," Leiden University Medical Centre Report 1(1), (2005).
    29. 蔡凱鈞, "低能量密度高效率多波長反射式共光路拉曼探頭," 國立臺灣科技大學 (2023).
    30. P. H. Rodrigues Júnior, K. De Sá Oliveira, C. E. R. D. Almeida, L. F. C. De Oliveira, R. Stephani, M. D. S. Pinto, A. F. D. Carvalho, and Í. T. Perrone, "FT-Raman and chemometric tools for rapid determination of quality parameters in milk powder: Classification of samples for the presence of lactose and fraud detection by addition of maltodextrin," Food Chem. 196, 584–588 (2016).
    31. R. Legner, M. Voigt, C. Servatius, J. Klein, A. Hambitzer, and M. Jaeger, "A Four-Level Maturity Index for Hot Peppers (Capsicum annum) Using Non-Invasive Automated Mobile Raman Spectroscopy for On-Site Testing," Appl. Sci. 11(4), 1614 (2021).
    32. J. Fischer, G. M. Wallner, and A. Pieber, "Spectroscopical Investigation of Ski Base Materials," Macromol. Symp. 265(1), 28–36 (2008).
    33. S.-C. Hsueh, L.-H. Wang, Y.-C. Liao, H.-Y. Chiang, and C.-H. Lin, "Capillary action-driven surface-enhanced Raman spectroscopy (SERS) for the identification of phthalocyanine blue in modern paintings based on the BPG spot test," Anal. Methods 16(14), 2147–2151 (2024).

    無法下載圖示 全文公開日期 2029/08/08 (校內網路)
    全文公開日期 2029/08/08 (校外網路)
    全文公開日期 2029/08/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE