研究生: |
陳沂杏 Yi-Sing Chen |
---|---|
論文名稱: |
串聯諧振轉換器之可調漏感整合式平板變壓器 Planar Transformer with Integrated Adjustable Leakage Inductance for a Series Resonant Converter |
指導教授: |
林景源
Jing-Yuan Lin 邱煌仁 Huang-Jen Chiu |
口試委員: |
邱煌仁
Huang-Jen Chiu 林景源 Jing-Yuan Lin 張佑丞 Yu-Cheng Chang 劉宇晨 Yu-Chen Liu |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 電子工程系 Department of Electronic and Computer Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 全橋串聯諧振轉換器 、變壓器整合 、印刷電路板繞線 |
外文關鍵詞: | Series resonant converter, Integrated inductor, Printed circuit board winding |
相關次數: | 點閱:691 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨為整合串聯諧振轉換器之變壓器與諧振電感的研製與探討。由於諧振電路中含有多種磁性元件,即使將切換頻率提升以縮小體積,磁性元件仍佔有一定的使用空間。因此本文對變壓器進行分析與研究,在提高切換頻率的同時,進一步減少磁性元件數量縮小了電路佔用體積,並降低磁性元件中導線因高頻磁交鏈所產生之交流銅損。最終透過調配變壓器磁通耦合方式達到諧振電感與變壓器整合,並採用印刷電路板繞線(Printed Circuit Board Winding, PCB Winding)取代傳統繞線。利用PCB設計的便利性進行交錯繞製,並選擇最小磁動勢之排列組合,進而降低變壓器之交流銅損,且提升繞組繞製之精度。最後實作出輸入電壓770 V、輸出電壓770 V、輸出功率6 kW、電路操作頻率300 kHz、諧振頻率300 kHz與最高效率為96.5%的全橋串聯諧振轉換器電路。
The thesis focuses on design and implementation of integrated inductor with transformer for a series resonant converter. Because of many magnetic elements in the resonant converter, the magnetic elements still hold a certain space, even if the switching frequency has been increased in order to reduce the volume. Therefore, the thesis analyzes and studies the transformer. While increasing the switching frequency, the circuit footprint and the number of magnetic components are reduced, and the AC copper loss in the magnetic components is also reduced. By adjusting the magnetic flux coupling, integrating transformer is achieved and using printed circuit board winding to replace traditional winding. The transformer reduces the ac copper loss and improves the accuracy of winding, by using the convenience of pcb design for interlaced winding and selected the combination of the smallest magnetomotive force. In the end, the series resonant converter is implemented, and the input voltage is 770 V, the output voltage is 770 V, the output power is 6 kW, the operation frequency is 300 kHz, the resonant frequency is 300 kHz, and the efficiency is 96.5%.
[1]A. Pratt, P. Kumar and T. V. Aldridge, “Evaluation of 400 V DC distribution in telco and data centers to improve energy efficiency,” INTELEC 07 - 29th International Telecommunications Energy Conference, Rome, 2007, pp. 32-39.
[2]S. Mondal and E. Keisling, “Efficient data center design using novel modular DC UPS, server power supply with DC voltage and modular CDU cooling,” 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Bengaluru, 2012, pp. 1-6.
[3]G. AlLee and W. Tschudi, “Edison Redux: 380 Vdc Brings Reliability and Efficiency to Sustainable Data Centers,” in IEEE Power and Energy Magazine, vol. 10, no. 6, pp. 50-59, Nov.-Dec. 2012.
[4]Xianjin Zhang and Caihong Fan, “Research on a novel DC-DC transformer,” 2011 International Conference on Electric Information and Control Engineering, Wuhan, 2011, pp. 1619-1622.
[5]R. Chen and S. Yu, “A high-efficiency high-power-density 1 MHz LLC converter with GaN devices and integrated transformer,” 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, 2018, pp. 791-796.
[6]R. Chen, P. Brohlin and D. Dapkus, “Design and magnetics optimization of LLC resonant converter with GaN,” 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, 2017, pp. 94-98.
[7]Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen and J. Lai, “Design of Bidirectional DC–DC Resonant Converter for Vehicle-to-Grid (V2G) Applications,” in IEEE Transactions on Transportation Electrification, vol. 1, no. 3, pp. 232-244, Oct. 2015.
[8]Jee-Hoon Jung, Ho-Sung Kim, Myung-Hyo Ryu, and Ju-Won Baek, “Design Methodology of Bidirectional CLLC Resonant Converter for High-Frequency Isolation of DC Distribution Systems,” IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 1741-1755, Apr. 2013.
[9]M. Khalil-Abaker, J. Shi and A. Kalam, “Design of a 100W bi-directional LCC series-parallel resonant DC-DC converter,” 2016 Australasian Universities Power Engineering Conference (AUPEC), Brisbane, QLD, 2016, pp. 1-5.
[10]T. Jiang, J. Zhang, X. Chen and Y Wang, “Bidirectional LLC resonant converter for energy storage applications”, Proc. IEEE Appl. Power Electron. Conf., pp. 1145-1151, 2013.
[11]C. Chen, X. Zhao, C. Yeh and J. Lai, “Analysis of the Zero-Voltage Switching Condition in LLC Series Resonant Converter with Secondary Parasitic Capacitors,” 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 2019, pp. 828-832.
[12]吳宗翰,「高功率密度15kW全橋串諧振式轉換器研製」,國台灣科技大學電子工程系碩士論文,2018年。
[13]蔡立勛,「對稱諧振槽之18kW高功率密度雙向轉換器研製」,國台灣科技大學電子工程系碩士論文,2019年。
[14]F. Xue, R. Yu and A. Q. Huang, “A 98.3% Efficient GaN Isolated Bidirectional DC–DC Converter for DC Microgrid Energy Storage System Applications,” in IEEE Transactions on Industrial Electronics, vol. 64, no. 11, pp. 9094-9103, Nov. 2017.
[15]Y. Tsuruta and A. Kawamura, “Proposal of DAB converter for partial boost circuit and test verification by means of the preceding fabrication,” 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, 2015, pp. 765-770.
[16]Biao Zhao, Qiang Song, Wenhua Liu, and Yandong Sun, “Overview of Dual-Active-Bridge Isolated Bidirectional DC-DC Converter for High-Frequency-Link Power-Conversion System,” IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 4091–4106, Nov. 2013.
[17]蔡富斌,「具同步整流之數位控制半橋串聯諧振轉換器研製」,國台灣科技大學電子工程系碩士論文,2012年。
[18]C. P. Steinmetz, “On the law of hysteresis, ” AIEE Transactions, vol. 9, pp. 3–64, 1892, Reprinted under the title “A Steinmemtz contribution to the ac power revolution, ” introduction by J. E. Brittain, in Proceedingsof the IEEE 72(2) 1984, pp. 196-221.
[19]J. Li, T. Abdallah and C. R. Sullivan, “Improved calculation of core loss with nonsinusoidal waveforms, ” Proc. Ind. Appl. Conf. 36th IEEE IAS Annu. Meeting, vol. 4, pp. 2203-2210, 2001.
[20]K. Venkatachalam, C. R. Sullivan, T. Abdallah and H. Tacca, “Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters, ” Proc. IEEE Workshop Comput. Power Electron., pp. 36-41, 2002.
[21]J. Muhlethaler, J. Biela, J. Kolar and A. Ecklebe, “Improved core-loss calculation for magnetic components employed in power electronic systems, ” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 964-973, Feb. 2012.
[22]P. L. Dowell, “Effects of eddy currents in transformer windings,” in Proceedings of the Institution of Electrical Engineers, vol. 113, no. 8, pp. 1387-1394, August 1966.
[23]J. Zhang, Z. Ouyang, M. C. Duffy, M. A. E. Andersen and W. G. Hurley, “Leakage inductance calculation for planar transformers with a magnetic shunt, ” IEEE Tran. Ind. Appl., vol. 50, no. 6, pp. 4107-4112, Nov.-Dec. 2014.
[24]M. Li, Z. Ouyang and M. A. E. Andersen, “High-Frequency LLC Resonant Converter With Magnetic Shunt Integrated Planar Transformer,” in IEEE Transactions on Power Electronics, vol. 34, no. 3, pp. 2405-2415, March 2019.
[25]B. Li, Q. Li and F. C. Lee, “High-Frequency PCB Winding Transformer With Integrated Inductors for a Bi-Directional Resonant Converter,” in IEEE Transactions on Power Electronics, vol. 34, no. 7, pp. 6123-6135, July 2019.
[26]Y.C. Liu, C. Chen, Kai-De Chen, Y.L. Syu and M.C. Tsai, “High-frequency LLC resonant converter with GaN devices and integrated magnetics, ” Energies 2019, vol. 12, no. 9, pp. 1781, 2019.