簡易檢索 / 詳目顯示

研究生: 廖曉慧
Evelyn Rijanto
論文名稱: 聚乙二醇修飾PETase對增强降解聚對苯二甲酸乙二醇酯(PET)之研究
PEGylated PETase for enhancing polyethylene terephthalate (PET) hydrolysis
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 蔡伸隆
Shen-Long Tsai
蔡伸隆
Shen-Long Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 85
中文關鍵詞: 聚對苯二甲酸乙二醇酯甲氧基聚乙二醇醛TEMPO 催化氧化N 端特定位點聚乙二醇化潤濕性擁擠效應PET 水解Ideonella sakaiensis PETase
外文關鍵詞: polyethylene terephthalate, methoxy-polyethylene glycol aldehyde, TEMPO-catalyzed oxidiation, N-terminal site-spesific PEGylation, lysine side chain site-spesific PEGylation, crowding effect, PET hydrolysis, Ideonella sakaiensis PETase
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚對苯二甲酸乙二醇酯(PET)在廢棄之塑膠所佔比例與日愈增,造成嚴重的環境問題,如何回收PET 的研究課題也日益迫切。最近,Ideonella sakaiensis PETase 被發現有顯著的降解 PET的能力。而將聚乙二醇(PEG)共價連接於生物活性分子上,已被證實用能延長生物分子藥物在體內循環時間,提高穩定性和降低免疫抗原性。本論文研究以聚乙二醇來修飾PETase 之N端氨基和賴氨酸側鏈,期望聚乙二醇修飾後之PETase能提升其對PET水解能力。首先來自 Ideonella sakaiensis 的PETase 在大腸桿菌中被表達,經金屬親和層析純化為分子量30 kDa 的可溶蛋白質,而末端含有醛基的mPEG-CHO則是以TEMPO 催化 mPEG氧化而得,利用Schiff鹼反應則可將mPEG-CHO接於PETase上,聚乙二醇修飾後之PETase仍保有PETase催化活性,也提升PET水解後MHET和TPA的產量。聚乙二醇修飾也提升了PETase的熱穩定性,可提高溫度至50℃,最適水解 pH也可提升至pH 9。此外,本論文也研究添加 mPEG 對 PET 表面的潤濕性及PETase對 PET 水解的效應,以了解聚乙二醇化 PETase 提升 PET 水解的可能機制。


    Polyethylene terephthalate (PET) is a recyclable thermoplastic polyester. It is one of major plastic waste in urban area. Its recycling is in critical need. Ideonella sakaiensis PETase recently demonstrated the notable ability to degrade PET. PEGylation, covalent attachment of polyethylene glycol to bioactive molecules is one of the leading approaches to prolong the pharmacokinetics, improve the stability and to reduce the immunogenicity of therapeutic proteins. In this work, site specific PEGylation of PETase was demonstrated. N-terminal and lysine side chain amine reduction reaction was employed to perform PEGylation of PETase. TEMPO-catalyzed oxidation of mPEG was prepared to obtain mPEG-CHO as activated PEG. Recombinant PETase from Ideonella sakaiensis was successfully expressed in E.coli and purified as a soluble protein with molecular weight ± 30 kDa by immobilized metal affinity chromatography (IMAC). PETase was PEGylated successfully via Schiff base reaction with 1:10 weight ratio of PETase to mPEG-CHO. PEGylation increased hydrolysis products MHET and TPA production from PET powder (64.8% CrI) in a mild reaction condition (30℃, pH 8) as compared with native PETase. Furthermore, PEGylation enhanced PETase thermal stability that PET hydrolysis could be carried out under elevated temperature of 50℃. Stabilizing effect on optimum reaction pH was also achieved by PEGylation that pH 9 could be used for PET hydrolysis. Moreover, wettability on PET surface and crowding effect on PET hydrolysis due to the addition of mPEG were also studied to understand the possible mechanism between of PEGylated PETase and PET substrate.

    摘要 i ABSTRACT ii ABBREVIATIONS ii ACKNOWLEDGEMENT iv TABLE OF CONTENTS v LIST OF FIGURES viii LIST OF TABLES xii CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Research objectives 3 CHAPTER 2 LITERATURE REVIEW 5 2.1 Polyethylene terephthalate (PET) 5 2.2 Ideonella sakaiensis (I. sakaiensis) PETase 8 2.3 Protein PEGylation 12 2.4 Selective TEMPO-oxidation of alcohols to aldehydes 15 CHAPTER 3 MATERIAL AND METHOD 17 3.1 Materials 17 3.2 Bacterial culture medium 19 3.3 Reagent 19 3.4 Apparatus 22 3.5 Characterization 22 3.5.1 Purpald assay 22 3.5.2 Bicinchoninic acid (BCA) protein assay 24 3.5.3. p-nitrophenyl acetate (p-NPA) assay 25 3.5.4 2,4,6-Trinitrobenzenesulfonic acid (TNBS) assay 26 3.5.5 TPA, MHET and BHET calibration curves for HPLC analysis 28 3.5.6 Polyacrylamide gel electrophoresis (SDS-PAGE) 31 3.5.7 Immobilized metal-chelated affinity chromatography (IMAC) 31 3.5.8 1H-NMR spectroscopy 32 3.5.9 Atomic force microscopy (AFM) 32 3.5.10 Water contact angle (WCA) 32 3.5.11 X-ray diffraction analysis (XRD) 33 3.6 Method 33 3.6.1 Expression and purification of recombinant PETase 33 3.6.2 p-nitrophenyl acetate (p-NPA) activity assay 33 3.6.3 Preparation of mPEG-CHO 34 3.6.4 PEGylation of PETase 34 3.6.5 Effect of PEGylation on PETase activity 34 3.6.6 Determination of PETase optimum pH condition by PET hydrolysis 35 3.6.7 Stability of PEGylated PETase by PET hydrolysis 35 CHAPTER 4 RESULT AND DISCUSSION 36 4.1 Expression and purification of recombinant PETase 36 4.2 Preparation of mPEG-CHO 37 4.3 PEGylation of PETase 39 4.4 Application of PEGylated PETase on PET hydrolysis 46 CHAPTER 5 CONCLUSION 60 REFERENCES 62

    1. Alconcel, S. N. S., Baas, A. S., & Maynard, H. D. (2011). FDA-approved poly(ethylene glycol)-protein conjugate drugs. Polymer Chemistry, 2(7), 1442–1448. https://doi.org/10.1039/c1py00034a
    2. Augé, A. A. (2017). Anthropogenic debris in the diet of turkey vultures (Cathartes aura) in a remote and low-populated South Atlantic island. Polar Biology, 40(4), 799–805. https://doi.org/10.1007/s00300-016-2004-0
    3. Austin, H. P., Allen, M. D., Donohoe, B. S., Rorrer, N. A., Kearns, F. L., Silveira, R. L., Pollard, B. C., Dominick, G., Duman, R., Omari, K. El, Mykhaylyk, V., Wagner, A., Michener, W. E., Amore, A., Skaf, M. S., Crowley, M. F., Thorne, A. W., Johnson, C. W., Lee Woodcock, H., … Beckham, G. T. (2018). Characterization and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences of the United States of America, 115(19), E4350–E4357. https://doi.org/10.1073/pnas.1718804115
    4. Badia, J. D., Strömberg, E., Karlsson, S., & Ribes-Greus, A. (2012). The role of crystalline, mobile amorphous and rigid amorphous fractions in the performance of recycled poly (ethylene terephthalate) (PET). Polymer Degradation and Stability, 97(1), 98–107. https://doi.org/10.1016/j.polymdegradstab.2011.10.008
    5. Bailey, W. F., Bobbitt, J. M., & Wiberg, K. B. (2007). Mechanism of the oxidation of alcohols by oxoammonium cations. Journal of Organic Chemistry, 72(12), 4504–4509. https://doi.org/10.1021/jo0704614
    6. Bradford, M. M. (2017). A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Crop Journal, 5(5), 407–415. https://doi.org/10.1016/j.cj.2017.04.003
    7. Caliceti, P., Schiavon, O., Veronese, F. M., & Chaiken, I. M. (1990). Effects of monomethoxypoly(ethylene glycol) modification of ribonuclease on antibody recognition, substrate accessibility and conformational stability. Journal of Molecular Recognition, 3(2), 89–93. https://doi.org/10.1002/jmr.300030206
    8. Carr, C. M., Clarke, D. J., & Dobson, A. D. W. (2020). Microbial Polyethylene Terephthalate Hydrolases: Current and Future Perspectives. Frontiers in Microbiology, 11(November 2020), 1–23. https://doi.org/10.3389/fmicb.2020.571265
    9. Cayot, P., & Tainturier, G. (1997). The quantification of protein amino groups by the trinitrobenzenesulfonic acid method: A reexamination. Analytical Biochemistry, 249(2), 184–200. https://doi.org/10.1006/abio.1997.2161
    10. Chen, C. C., Han, X., Ko, T. P., Liu, W., & Guo, R. T. (2018). Structural studies reveal the molecular mechanism of PETase. FEBS Journal, 285(20), 3717–3723. https://doi.org/10.1111/febs.14612
    11. Chiu, H. C., Zalipsky, S., Kopeckova, P., & Kopecek, J. (1993). Correction-Enzymatic activity of chymotrypsin and its poly(ethylene glycol) conjugates toward low and high molecular weight substrates. Bioconjugate Chemistry, 4(5), 410. https://doi.org/10.1021/bc00023a601
    12. Cui, Y., Chen, Y., Liu, X., Dong, S., Tian, Y., Qiao, Y., Mitra, R., Han, J., Li, C., Han, X., Liu, W., Chen, Q., Wei, W., Wang, X., Du, W., Tang, S., Xiang, H., Liu, H., Liang, Y., … Wu, B. (2021). Computational Redesign of a PETase for Plastic Biodegradation under Ambient Condition by the GRAPE Strategy. ACS Catalysis, 11(3), 1340–1350. https://doi.org/10.1021/acscatal.0c05126
    13. da Silva Freitas, D., & Abrahão-Neto, J. (2010). Biochemical and biophysical characterization of lysozyme modified by PEGylation. International Journal of Pharmaceutics, 392(1–2), 111–117. https://doi.org/10.1016/j.ijpharm.2010.03.036
    14. Dabbagh, A., Abdullah, B. J. J., Abdullah, H., Hamdi, M., & Kasim, N. H. A. (2015). Triggering Mechanisms of Thermosensitive Nanoparticles under Hyperthermia Condition. Journal of Pharmaceutical Sciences, 104(8), 2414–2428. https://doi.org/10.1002/jps.24536
    15. de Castro, A. M., Carniel, A., Nicomedes Junior, J., da Conceição Gomes, A., & Valoni, É. (2017). Screening of commercial enzymes for poly(ethylene terephthalate) (PET) hydrolysis and synergy studies on different substrate sources. Journal of Industrial Microbiology and Biotechnology, 44(6), 835–844. https://doi.org/10.1007/s10295-017-1942-z
    16. Demirel, B., Yaraș, A., & Elçiçek, H. (2011). Crystallization Behavior of PET Materials. BAÜ Fen Bil. Enst. Dergisi Cilt, 13(1), 26–35.
    17. Dozier, J. K., & Distefano, M. D. (2015). Site-specific pegylation of therapeutic proteins. International Journal of Molecular Sciences, 16(10), 25831–25864. https://doi.org/10.3390/ijms161025831
    18. Fecker, T., Galaz-Davison, P., Engelberger, F., Narui, Y., Sotomayor, M., Parra, L. P., & Ramírez-Sarmiento, C. A. (2018). Active Site Flexibility as a Hallmark for Efficient PET Degradation by I. sakaiensis PETase. Biophysical Journal, 114(6), 1302–1312. https://doi.org/10.1016/j.bpj.2018.02.005
    19. Franka Ganske. (2009). Enzyme kinetic measurements performed on a BMG LABTECH microplate reader. 2–3.
    20. Furukawa, M., Kawakami, N., Oda, K., & Miyamoto, K. (2018). Acceleration of Enzymatic Degradation of Poly(ethylene terephthalate) by Surface Coating with Anionic Surfactants. ChemSusChem, 11(23), 4018–4025. https://doi.org/10.1002/cssc.201802096
    21. Furukawa, M., Kawakami, N., Tomizawa, A., & Miyamoto, K. (2019). Efficient Degradation of Poly(ethylene terephthalate) with Thermobifida fusca Cutinase Exhibiting Improved Catalytic Activity Generated using Mutagenesis and Additive-based Approaches. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-52379-z
    22. Garcia, J. M., & Robertson, M. L. (2017). The future of plastics recycling. Science, 358(6365), 870–872. https://doi.org/10.1126/science.aaq0324
    23. Grigore, M. E. (2017). Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling, 2(4), 1–11. https://doi.org/10.3390/recycling2040024
    24. Gyarmati, B., Hegyesi, N., Pukánszky, B., & Szilágyi, A. (2015). A colourimetric method for the determination of the degree of chemical cross-linking in aspartic acid-based polymer gels. Express Polymer Letters, 9(2), 154–164. https://doi.org/10.3144/expresspolymlett.2015.16
    25. Han, X., Liu, W., Huang, J. W., Ma, J., Zheng, Y., Ko, T. P., Xu, L., Cheng, Y. S., Chen, C. C., & Guo, R. T. (2017). Structural insight into catalytic mechanism of PET hydrolase. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-02255-z
    26. Harris, J. M., Struck, E. C., Case, M. G., & Al, H. E. T. (1984). Synthesis and Characterization of Poly(ethylene Glycol) Derivatives. 22, 341–352.
    27. Hernáiz, M. J., Sánchez-Montero, J. M., & Sinisterra, J. V. (1997). Influence of the nature of modifier in the enzymatic activity of chemical modified semipurified lipase from Candida rugosa. Biotechnology and Bioengineering, 55(2), 252–260. https://doi.org/10.1002/(SICI)1097-0290(19970720)55:2<252::AID-BIT2>3.0.CO;2-H
    28. Herrero Acero, E., Ribitsch, D., Steinkellner, G., Gruber, K., Greimel, K., Eiteljoerg, I., Trotscha, E., Wei, R., Zimmermann, W., Zinn, M., Cavaco-Paulo, A., Freddi, G., Schwab, H., & Guebitz, G. (2011). Enzymatic surface hydrolysis of PET: Effect of structural diversity on kinetic properties of cutinases from Thermobifida. Macromolecules, 44(12), 4632–4640. https://doi.org/10.1021/ma200949p
    29. Hinzmann, A., Stricker, M., Busch, J., Glinski, S., Oike, K., & Gröger, H. (2020). Selective TEMPO-Oxidation of Alcohols to Aldehydes in Alternative Organic Solvents. European Journal of Organic Chemistry, 2020(16), 2399–2408. https://doi.org/10.1002/ejoc.201901365
    30. Hiraga, K., Taniguchi, I., Yoshida, S., Kimura, Y., & Oda, K. (2019). Biodegradation of waste PET . EMBO Reports, 20(11), 1–5. https://doi.org/10.15252/embr.201949365
    31. Hsieh, Y. P., & Lin, S. C. (2015). Effect of PEGylation on the activity and stability of horseradish peroxidase and L-N-carbamoylase in aqueous phases. Process Biochemistry, 50(9), 1372–1378. https://doi.org/10.1016/j.procbio.2015.04.024
    32. Jendral, J. A., Monakhova, Y. B., & Lachenmeier, D. W. (2011). Formaldehyde in Alcoholic Beverages: Large Chemical Survey Using Purpald Screening Followed by Chromotropic Acid Spectrophotometry with Multivariate Curve Resolution. International Journal of Analytical Chemistry, 2011, 1–11. https://doi.org/10.1155/2011/797604
    33. Joo, S., Cho, I. J., Seo, H., Son, H. F., Sagong, H. Y., Shin, T. J., Choi, S. Y., Lee, S. Y., & Kim, K. J. (2018). Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-02881-1
    34. Kawai, F., Kawabata, T., & Oda, M. (2019). Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Applied Microbiology and Biotechnology, 103(11), 4253–4268. https://doi.org/10.1007/s00253-019-09717-y
    35. Kawai, F., Oda, M., Tamashiro, T., Waku, T., Tanaka, N., Yamamoto, M., Mizushima, H., Miyakawa, T., & Tanokura, M. (2014). A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Applied Microbiology and Biotechnology, 98(24), 10053–10064. https://doi.org/10.1007/s00253-014-5860-y
    36. Kirihara, M., Okada, T., Sugiyama, Y., Akiyoshi, M., Matsunaga, T., & Kimura, Y. (2017). Sodium Hypochlorite Pentahydrate Crystals (NaOCl·5H2O): A Convenient and Environmentally Benign Oxidant for Organic Synthesis. Organic Process Research and Development, 21(12), 1925–1937. https://doi.org/10.1021/acs.oprd.7b00288
    37. Kota, A. K., Kwon, G., & Tuteja, A. (2014). The design and applications of superomniphobic surfaces. NPG Asia Materials, 6(6), e109-16. https://doi.org/10.1038/am.2014.34
    38. Kozlowski, A., & Milton Harris, J. (2001). Improvements in protein PEGylation: Pegylated interferons for treatment of hepatitis C. Journal of Controlled Release, 72(1–3), 217–224. https://doi.org/10.1016/S0168-3659(01)00277-2
    39. Law, K.-Y. (2014). Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right. 686–688.
    40. Leitão, A. L., & Enguita, F. J. (2021). Structural insights into carboxylic polyester-degrading enzymes and their functional depolymerizing neighbors. International Journal of Molecular Sciences, 22(5), 1–14. https://doi.org/10.3390/ijms22052332
    41. Li, L., Xie, J., Yu, S., Su, Z., Liu, S., Liu, F., Xie, C., Zhang, B., & Zhang, C. (2013). N-terminal PEGylated cellulase: A high stability enzyme in 1-butyl-3-methylimidazolium chloride. Green Chemistry, 15(6), 1624–1630. https://doi.org/10.1039/c3gc40104a
    42. Liu, B., He, L., Wang, L., Li, T., Li, C., Liu, H., Luo, Y., & Bao, R. (2018). Protein crystallography and site-direct mutagenesis analysis of the poly(Ethylene terephthalate) hydrolase petase from Ideonella sakaiensis. ChemBioChem, 19(14), 1471–1475. https://doi.org/10.1002/cbic.201800097
    43. Liu, C., Shi, C., Zhu, S., Wei, R., & Yin, C. C. (2019). Structural and functional characterization of polyethylene terephthalate hydrolase from Ideonella sakaiensis. Biochemical and Biophysical Research Communications, 508(1), 289–294. https://doi.org/10.1016/j.bbrc.2018.11.148
    44. Lopes, D. B., Fraga, L. P., Fleuri, L. F., & Macedo, G. A. (2011). Lipase and esterase - to what extent can this classification be applied accurately? Ciencia e Tecnologia de Alimentos, 31(3), 608–613. https://doi.org/10.1590/s0101-20612011000300009
    45. Luo, Z., Ding, J., Xu, W., Zheng, T., & Zhong, T. (2015). Sinobacterium caligoides gen . nov . sp . nov ., a new member of the family Oceanospirillaceae isolated from South China Sea and emended description of International Biodeterioration & Biodegradation Puri fi cation and characterization of an intracellular. International Biodeterioration & Biodegradation, 97(February), A1–A16. https://doi.org/10.1016/j.ibiod.2014.10.006
    46. Ma, Y., Yao, M., Li, B., Ding, M., He, B., Chen, S., & Zhou, X. (2018). Enhanced Poly ( ethylene terephthalate ) Hydrolase Activity by Protein Engineering. 4, 888–893. https://doi.org/10.1016/j.eng.2018.09.007
    47. Marshall, I., & Todd, A. (1978). Thermal degradation of poly(ethylene terephthalate). 67–78.
    48. Matsushima, A., Kodera, Y., Hiroto, M., Nishimura, H., & Inada, Y. (1996). Bioconjugates of proteins and polyethylene glycol: Potent tools in biotechnological processes. Journal of Molecular Catalysis B: Enzymatic, 2(1), 1–17. https://doi.org/10.1016/1381-1177(96)00003-3
    49. Mohsin, M. A., Abdulrehman, T., & Haik, Y. (2017). Reactive Extrusion of Polyethylene Terephthalate Waste and Investigation of Its Thermal and Mechanical Properties after Treatment. International Journal of Chemical Engineering, 2017, 15–18. https://doi.org/10.1155/2017/5361251
    50. Moreno-Pérez, S., Orrego, A. H., Romero-Fernández, M., Trobo-Maseda, L., Martins-Deoliveira, S., Munilla, R., Fernández-Lorente, G., & Guisan, J. M. (2016). Intense PEGylation of Enzyme Surfaces: Relevant Stabilizing Effects. Methods in Enzymology, 571(December), 55–72. https://doi.org/10.1016/bs.mie.2016.02.016
    51. Munasinghe, A., Mathavan, A., Mathavan, A., Lin, P., & Colina, C. M. (2019). PEGylation within a confined hydrophobic cavity of a protein. Physical Chemistry Chemical Physics, 21(46), 25584–25596. https://doi.org/10.1039/c9cp04387j
    52. Noro, J., Castro, T. G., Gonçalves, F., Ribeiro, A., Cavaco-Paulo, A., & Silva, C. (2019). Catalytic Activation of Esterases by PEGylation for Polyester Synthesis. ChemCatChem, 11(10), 2490–2499. https://doi.org/10.1002/cctc.201900451
    53. Özdemir, C., & Güner, A. (2006). Solution thermodynamics of poly(ethylene glycol)water systems. Journal of Applied Polymer Science, 101(1), 203–216. https://doi.org/10.1002/app.23191
    54. Pace, C. N., Grimsley, G. R., & Scholtz, J. M. (2009). Protein ionizable groups: pK values and their contribution to protein stability and solubility. Journal of Biological Chemistry, 284(20), 13285–13289. https://doi.org/10.1074/jbc.R800080200
    55. Parray, Z. A., Hassan, M. I., Ahmad, F., & Islam, A. (2020). Amphiphilic nature of polyethylene glycols and their role in medical research. Polymer Testing, 82(October 2019), 106316. https://doi.org/10.1016/j.polymertesting.2019.106316
    56. Payne, R. W., Murphy, B. M., & Manning, M. C. (2011). Product development issues for PEGylated proteins. Pharmaceutical Development and Technology, 16(5), 423–440. https://doi.org/10.3109/10837450.2010.513990
    57. Piguet, F., Ouldali, H., Discala, F., Breton, M. F., Behrends, J. C., Pelta, J., & Oukhaled, A. (2016). High Temperature Extends the Range of Size Discrimination of Nonionic Polymers by a Biological Nanopore. Scientific Reports, 6(December), 1–10. https://doi.org/10.1038/srep38675
    58. Prata, J. C. (2018). Airborne microplastics: Consequences to human health? Environmental Pollution, 234, 115–126. https://doi.org/10.1016/j.envpol.2017.11.043
    59. Puspitasari, N., Tsai, S. L., & Lee, C. K. (2021). Fungal Hydrophobin RolA Enhanced PETase Hydrolysis of Polyethylene Terephthalate. Applied Biochemistry and Biotechnology, 193(5), 1284–1295. https://doi.org/10.1007/s12010-020-03358-y
    60. Quesenberry, M. S., & Lee, Y. C. (1996). A rapid formaldehyde assay using purpald reagent: Application under periodation conditions. Analytical Biochemistry, 234(1), 50–55. https://doi.org/10.1006/abio.1996.0048
    61. Reid, L. M., Li, T., Cao, Y., & Berlinguette, C. P. (2018). Organic chemistry at anodes and photoanodes. Sustainable Energy and Fuels, 2(9), 1905–1927. https://doi.org/10.1039/c8se00175h
    62. Roberts, M. J., Bentley, M. D., & Harris, J. M. (2012). Chemistry for peptide and protein PEGylation. Advanced Drug Delivery Reviews, 64(SUPPL.), 116–127. https://doi.org/10.1016/j.addr.2012.09.025
    63. Rochman, C. M., Hoh, E., Hentschel, B. T., & Kaye, S. (2013). Classify plastic waste as hazardous (types of externalities caused by consumption of plastic bags). Environmental Science and Technology, 47(3), 1646–1654.
    64. Ronkvist, Å. M., Xie, W., Lu, W., & Gross, R. A. (2009). Cutinase-Catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules, 42(14), 5128–5138. https://doi.org/10.1021/ma9005318
    65. Samak, N. A., Jia, Y., Sharshar, M. M., Mu, T., Yang, M., Peh, S., & Xing, J. (2020). Recent advances in biocatalysts engineering for polyethylene terephthalate plastic waste green recycling. Environment International, 145, 106144. https://doi.org/10.1016/j.envint.2020.106144
    66. Santos, J. H. P. M., Torres-Obreque, K. M., Meneguetti, G. P., Amaro, B. P., & Rangel-Yagui, C. O. (2018). Protein PEGylation for the design of biobetters: From reaction to purification processes. Brazilian Journal of Pharmaceutical Sciences, 54(Special Issue), 1–17. https://doi.org/10.1590/s2175-97902018000001009
    67. Scalenghe, R. (2018). Resource or waste? A perspective of plastics degradation in soil with a focus on end-of-life options. Heliyon, 4(12), e00941. https://doi.org/10.1016/j.heliyon.2018.e00941
    68. Sigler, M. (2014). The effects of plastic pollution on aquatic wildlife: Current situations and future solutions. Water, Air, and Soil Pollution, 225(11). https://doi.org/10.1007/s11270-014-2184-6
    69. Sinha, V., Patel, M. R., & Patel, J. V. (2010). Pet waste management by chemical recycling: A review. Journal of Polymers and the Environment, 18(1), 8–25. https://doi.org/10.1007/s10924-008-0106-7
    70. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., & Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76–85. https://doi.org/10.1016/0003-2697(85)90442-7
    71. Son, H. F., Joo, S., Seo, H., Sagong, H. Y., Lee, S. H., Hong, H., & Kim, K. J. (2020). Structural bioinformatics-based protein engineering of thermo-stable PETase from Ideonella sakaiensis. Enzyme and Microbial Technology, 141(May), 109656. https://doi.org/10.1016/j.enzmictec.2020.109656
    72. Sulaiman, S., Yamato, S., Kanaya, E., Kim, J. J., Koga, Y., Takano, K., & Kanaya, S. (2012). Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Applied and Environmental Microbiology, 78(5), 1556–1562. https://doi.org/10.1128/AEM.06725-11
    73. Tokiwa, Y., Calabia, B. P., Ugwu, C. U., & Aiba, S. (2009). Biodegradability of plastics. International Journal of Molecular Sciences, 10(9), 3722–3742. https://doi.org/10.3390/ijms10093722
    74. Turecek, P. L., Bossard, M. J., Schoetens, F., & Ivens, I. A. (2016). PEGylation of Biopharmaceuticals: A Review of Chemistry and Nonclinical Safety Information of Approved Drugs. Journal of Pharmaceutical Sciences, 105(2), 460–475. https://doi.org/10.1016/j.xphs.2015.11.015
    75. Wang, S., & Jiang, L. (2007). Definition of superhydrophobic states. Advanced Materials, 19(21), 3423–3424. https://doi.org/10.1002/adma.200700934
    76. Wei, R., Oeser, T., & Zimmermann, W. (2014). Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes. In Advances in Applied Microbiology (1st ed., Vol. 89). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800259-9.00007-X
    77. Yamada, A., Kamada, K., Ueda, T., Hyodo, T., Shimizu, Y., & Soh, N. (2018). Enhanced catalytic activity and thermal stability of lipase bound to oxide nanosheets. RSC Advances, 8(36), 20347–20352. https://doi.org/10.1039/c8ra03558j
    78. Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y., & Oda, K. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 353(6301), 759. https://doi.org/10.1126/science.aaf8305
    79. Zalipsky, S. (1995). Functionalized Poly(ethylene glycol) for Preparation of Biologically Relevant Conjugates. 150–165.
    80. Zarrintaj, P., Saeb, M. R., Jafari, S. H., & Mozafari, M. (2019). Application of compatibilized polymer blends in biomedical fields. In Compatibilization of Polymer Blends: Micro and Nano Scale Phase Morphologies, Interphase Characterization, and Properties. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816006-0.00018-9
    81. Zekriardehani, S., Jabarin, S. A., Gidley, D. R., & Coleman, M. R. (2017). Effect of Chain Dynamics, Crystallinity, and Free Volume on the Barrier Properties of Poly(ethylene terephthalate) Biaxially Oriented Films. Macromolecules, 50(7), 2845–2855. https://doi.org/10.1021/acs.macromol.7b00198
    82. Zong, X. H., Wang, Z. G., Hsiao, B. S., Chu, B., Zhou, J. J., Jamiolkowski, D. D., Muse, E., & Dormier, E. (1999). Structure and morphology changes in absorbable poly(glycolide) and poly(glycolide-co-lactide) during in vitro degradation. Macromolecules, 32(24), 8107–8114. https://doi.org/10.1021/ma990630p

    無法下載圖示 全文公開日期 2024/09/23 (校內網路)
    全文公開日期 2024/09/23 (校外網路)
    全文公開日期 2024/09/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE