簡易檢索 / 詳目顯示

研究生: 金芷萱
Chih-Hsuan Chin
論文名稱: 使用高強度撓曲鋼筋之低軸力鋼筋混凝土柱振動台試驗
Shaking Table Test of RC Column Using High-Strength Flexural Reinforcement Under Low Axial Load
指導教授: 鄭敏元
Min-Yuan Cheng
口試委員: 邱建國
Chien-Kuo Chiu
陳正誠
Cheng-Cheng Chen
歐昱辰
Yu-Chen Ou
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 175
中文關鍵詞: 高強度鋼筋勁度振動台試驗
外文關鍵詞: high-strength reinforcement, stiffness, shake table test
相關次數: 點閱:169下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為了方便結構設計及現場施工下,高強度鋼筋的使用需求日益漸增,過去幾年國內外均有許多學者致力研究高強度鋼筋於不同鋼筋混凝土構件使用的可行性,然而實驗大多以靜態方式進行測試,對於承受動態作用下之行為並不清楚,為能更了解使用高強度鋼筋之鋼筋混凝土構件於地震下的反應,本研究設計並測試兩座使用不同降伏強度鋼筋之單跨單自由度構架試體,先於振動台上同時進行十六組動態的地震歷時測試,接著移至反力牆進行靜態往復載重試驗。動態試驗結果顯示使用降伏強度為717 MPa(104 ksi)之高強度撓曲鋼筋試體H1所得最大變形量在所有地震歷時下均大於使用降伏強度453 MPa(65.6 ksi)之普通強度試體C1,整體而言試體最大變形量比介於1.33 到 2.27之間。兩座試體的側向勁度隨著地震反應下最大位移增加而降低,試體C1的殘餘側向勁度可以透過地震反應下最大位移和對應在兩個加載方向上的基底剪力所形成的割線斜率來估算,相同的方法應用於試體H1時僅有在經歷小至中等地震下適用。當試體進入非線性反應後,測試結果顯示使用割線勁度之Shimazaki與Sozen模型合理提供試體C1非線性最大位移評估的上限值,但該模型所得結果對試體H1並不適用。


To facilitate the on-site construction without compromising the structural strengths or section sizes, the demand of using high-strength steel reinforcement has increased substantially in the past few years. The past experimental works to study the potential of using high-strength reinforcement in different reinforced concrete (RC) elements were mostly conducted under cyclic or monotonic static loading. Dynamic test on RC elements using high-strength reinforcement is very limited. In order to further understand the dynamic response of reinforced concrete structures using high-strength longitudinal reinforcement, two RC frame specimens were tested in this research. The columns of specimen C1 and H1 were designed to have the same nominal flexural strength using longitudinal reinforcement with yield strengths of 65.6 ksi (453 MPa) and 104 ksi (716 MPa), respectively. Specimens were subjected to a total of 16 ground motions on the shake table, followed by quasi-static test. The dynamic test results indicated that specimen H1 consistently exhibited larger drift than specimen C1 when subjected to a similar ground motion. Overall, the ratio of maximum drifts between H1 and C1 ranged from 1.33 to 2.27. The lateral stiffness of the two specimens decreased as the maximum drift induced by the ground motion increased. The residual lateral stiffness of specimen C1 can be reasonably estimated as the slope between the maximum positive and negative drifts on the foundation force-drift response. However, the residual stiffness in specimen H1 tended to be lower than the secant stiffness from the foundation force-drift response after a few ground motions. For nonlinear drift estimation, the model proposed by Shimazaki and Sozen (1984) using the secant stiffness provided an adequate upper limit for nonlinear displacement of specimen C1, but underestimated the nonlinear displacement of H1 for some ground motions.

摘要………………………………………………………………………………………Ⅰ Abstract…………………………………………………………………………Ⅱ 目錄……………………………………………………………………………………Ⅲ 圖目錄………………………………………………………………………………Ⅵ 表目錄………………………………………………………………………………Ⅹ 第一章 緒論……………………………………………1 1.1 研究背景……………………………………………1 1.2 研究目的……………………………………………3 1.3 研究方法……………………………………………4 1.4 研究內容架構……………………………………………5 第二章 文獻回顧……………………………………………6 2.1 非彈性結構反應評估………………………………6 2.1.1 Gulkan與Sozen (1974)………………………………6 2.1.2 Shimazaki和Sozen(1984)………………………………8 2.1.3 Sozen (1989)……………………………………………11 2.1.4 Lepage (1996)……………………………………………12 2.1.5 Chopra (2016)………………………………………13 2.2 ACI 318-19 有效勁度……………………………………………15 2.3 系統識別……………………………………………16 2.3.1 隨機子空間識別法(SSI)……………………………………………17 第三章 試體設計與試驗規劃……………………………………………22 3.1 試體設計……………………………………………22 3.1.1 柱主體……………………………………………32 3.1.2 彎矩曲率分析……………………………………………38 3.1.3 頂部混凝土塊………………………………………39 3.1.4 底部混凝土塊……………………………………………41 3.2 試體製作……………………………………………43 3.3 動態試驗配置及程序………………………………………48 3.3.1 振動台試驗配置…………………………………………48 3.3.2 振動台試驗程序……………………………………………52 3.3.3 振動台量測系統配置……………………………………55 3.3.3.1 外部位移量測……………………………………………57 3.3.3.2 加速度量測……………………………………………60 3.3.3.3 角度計……………………………………………62 3.3.3.4 外部變形量測……………………………………………65 3.3.3.5 裂縫寬度量測……………………………………………66 3.4 靜態試驗配置及程序……………………………………………68 3.4.1 反力牆試驗配置……………………………………………68 3.4.2 反力牆試驗程序……………………………………………71 3.4.3 反力牆量測系統配置……………………………………74 3.4.3.1 外部位移量測……………………………………………74 3.4.3.2 外部變形量測……………………………………………76 3.5 混凝土圓柱抗壓測試配置………………………………77 第四章 試驗結果分析……………………………………………78 4.1 材料試驗結果…………………………………………78 4.1.1 混凝土圓柱抗壓試驗…………………………………78 4.1.2 鋼筋材料試驗……………………………………………82 4.1.2.1 鋼筋幾何……………………………………………82 4.1.2.2 鋼筋拉伸試驗……………………………………………85 4.2 振動台動態試驗結果……………………………………………88 4.2.1 動態測試歷程……………………………………………88 4.2.2 振動台反應……………………………………………102 4.2.3 試體力量位移反應……………………………………………109 4.2.4 試體勁度分析……………………………………………125 4.2.4.1 系統識別……………………………………………125 4.2.4.2 試體有效剛度……………………………………………131 4.2.5 線彈性反應分析…………………………………………135 4.2.6 非線性反應分析……………………………………………137 4.3 反力牆靜態試驗結果………………………………………140 4.3.1 靜態測試歷程……………………………………………140 4.3.2 試體力量位移反應………………………………………146 4.3.3 能量消散能力…………………………………………149 4.3.4 曲率分佈……………………………………………152 4.3.5 勁度分析……………………………………………154 第五章 結論……………………………………………156 參考文獻……………………………………………158

ACI Committee 318, 2019, “Building Code Requirements for Structural Concrete and Commentary (ACI 318-19),” American Concrete Institute, Farmington Hills, Michigan, 623 pp.

Ameen, S., Lequesne, R.D. and Lepage, A., 2020, “Diagonally Reinforced Concrete Coupling Beams with Grade 120 (830) High-Strength Steel Bars,” ACI Structural Journal, V. 117, No. 6, pp.199-210.

ASCE/SEI 41- 17, 2017, “Seismic Evaluation and Retrofit of Existing Buildings,” American Society of Civil Engineers, Reston, Virginia, 576 pp.

ASCE/SEI 7- 16, 2016, “Minimum design loads and associated criteria for buildings and other structures,”, American Society of Civil Engineers, Reston, Virginia.

ASTM A370-21, 2021, “Standard Test Methods and Definitions for Mechanical Testing of Steel Products,” ASTM International, West Conshohocken, Pennsylvania, 50 pp.

Cheng, M.-Y., and Giduquio, M. B., 2014, “Cyclic Behavior of Reinforced Concrete Flexural Members Using High-Strength Flexural Reinforcement,” ACI Structural Journal, V. 111, No. 4, July-August, pp. 893-902.

Chopra, A. K., 2016, “Dynamics of Structures: Theory and Applications to Earthquake Engineering,”, Pearson, 5th edition, 992pp.

CNS 560:2018「鋼筋混凝土用鋼筋」。經濟部標準檢驗局。

Giduquio, M. B., Cheng, M.-Y., and Wibowo, S. B. L., 2015, “High-Strength Flexural Reinforcement in Reinforced Concrete Flexural Members under Monotonic Loading,”, ACI Structural Journal, V. 112, No. 6, pp. 793-803.

Gulkan, P., and Sozen, M. A., 1974, “Inelastic Responses of Reinforced Concrete Structures to Earthquake Motions,”, Journal of the American Concrete Institute, V. 71, No. 12, Dec., pp. 601-609.

Hognestad, E., 1952, “Inelastic Behavior in Tests of Eccentrically Loaded Short Reinforced Concrete Columns,” ACI Journal Proceedings, V. 24, No. 2, Oct., pp. 117-139.

Huq, M.S., Burgos, E.A., Lequesne, R.D. and Lepage, A., 2021, “High-Strength Steel Bars in Earthquake-Resistant Reinforced Concrete T-Shaped Walls.ACI Structural Journal,” V. 118, No. 1, pp. 215-226.

Kim, J.-H., and Park H.-G. ,2022, “Shear Strength of Flanged Squat Walls with 690 MPa Reinforcing Bars,”, ACI Structural Journal, V. 119, No. 2, pp. 209-303.

Lepage, A., 1996, “Seismic Drift Estimates for RC Structures,”, Paper No. 1110, Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico.

Lepage, A., Tavallali, H., Pujol, S. and Rautenberg, J.M., 2012. “High-Performance Steel Bars and Fibers as Concrete Reinforcement for Seismic-Resistant Frames,”, Advances in Civil Engineering, Hindawi, Vol. 2012, 13 pp.

Newmark, N. M., and Hall, W. J., 1973, “Procedures and criteria for earthquake resistant design,”, Building Science Series, Vol. 1, No. 46, Feb., pp. 209-236.

Ou, Y.C., and Kurniawan, D.P., 2015, “Effect of axial compression on shear behavior of high-strength reinforced concrete columns,” ACI Structural Journal, V. 112, No. 2, pp. 209-219.

Poudel, A., Lequesne, R. D., and Lepage, A. 2018, “Diagonally Reinforced Concrete Coupling Beams: Effects of Axial Restraint,”, ACI Structural Journal, V. 118, No. 6, pp. 293-220.

Shimazaki, K., and Sozen, M. A., 1984, “Seismic Drift of Reinforced Concrete Structures,” Technical Research Report of Hazama-Gumi, Ltd., Tokyo, pp. 145-165.

Sozen, M. A., 1989, “A Frame of Reference,” The Art and Science of Geotechnical Engineering, A Volume Honoring Ralph B. Peck, Prentice Hall, pp. 240-247.

Tavallali1, H., Lepage, A., Rautenberg, J., and Pujol, S., 2011, “Cyclic Response of Concrete Frame Members Reinforced with Ultrahigh Strength Steel,”, Structures Congress, pp. 560-570.

Van Overschee, P., and De Moor, B., 1996, “Subspace Identification for Linear Systems: Theory Implementation Applications,” Kluwer Academic Publishers, Dordrecht, the Netherlands.

Veletsos, A. S., and Newmark, N. M., 1960, “Effect of Inelastic Behavior on the Response of Simple Systems to Earthquake Motions,”, Second World Conference on Earthquake Engineering, Vol. 2, Tokyo, pp. 895-912.

Weight, J., 2015, “Reinforced Concrete: Mechanics and Design,” Pearson, 7th edition, 1176pp.

顏舜邦,利用振動台試驗研究高強度鋼筋之鋼筋混凝土結構變形量,國立臺灣科技大學碩士論文。2020。

QR CODE