簡易檢索 / 詳目顯示

研究生: Tamene Simachew Zeleke
Tamene Simachew Zeleke
論文名稱: 新型氫氣氧化反應陰極材料合成與其機制探討
Design of Cathode Materials for Electrolyzer and Propose A Plausible Mechanism for Hydrogen Oxidation Reaction
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei- Nien Su
口試委員: 葉旻鑫
Min-Hsin Yeh
周澤川
Tse-Chuan Chou
鄧熙聖
Hsisheng Teng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 156
中文關鍵詞: Cathode materialHydrogen evolution reactionSingle moleculeMolybdenum disulfideReaction rateReaction MechanismHydrogen oxidation reaction
外文關鍵詞: Cathode material, Hydrogen evolution reaction, Single molecule, Molybdenum disulfide, Reaction rate, Reaction Mechanism, Hydrogen oxidation reaction
相關次數: 點閱:568下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 能源生產和儲存對社會的經濟增長至關重要。 科學界旨在開發替代能源、綠色能源和可再生能源。氫是最具吸引力和環境友好的能源之一。它以電解水生成時所需過電位最低因而成為主流研究領域之一,並且已經進行了許多研究工作。鉑(Pt)及其合金由於所需過電位較低是作為氫氣析出反應(HER)的先進電化學觸媒。 然而,其元素蘊藏量短缺和高成本主要限制其應用。最近,學者們正在努力用高元素豐度及廉價的過渡金屬硫化物、硒化物、氮化物和磷化物來代替鉑觸媒。
    對HER的非貴重材料是實際應用的基礎;然而,它們不能在較低的過電位下產生高電流密度為一大挑戰。目前來說,2D過渡金屬二硫化物(TMDs)因其在催化應用中的活性和穩定性而成為對HER主要的研究課題。
    在第一項工作中,我們製備了在cPAN分子上固定化硫化鉬單分子電催化劑(MoS2-cPAN),它對HER具有高催化作用。首先,通過SPAN與Li金屬的電化學反應,在碳化PAN分子表面上形成Li2S-cPAN。接著,利用物種間的電位差使Li2S-cPAN與Mo離子反應後形成的cPAN分子表面上固定化單分子的硫化鉬。從結果來看,被固定化的硫化鉬單分子在EXAFS光譜上顯示明顯的鉬-硫鍵結但沒有金屬-金屬鍵結,理論估計其尺寸為1.31nm。硫化鉬單分子表面的低配位數和最大化利用率使得MoS2-cPAN在氫氣析出反應上以高100倍的交換電流密度(jo和TOF明顯優於塊材硫化鉬。

    在第二項研究中,通過誘導額外的活性位點或不對稱電荷轉移,將另一過渡金屬原子結合到MoS2納米薄膜來證明交換電流密度的增加。此方法中,MoSx-cPAN/Cu網狀電催化劑分別通過深層塗布和電化學技術在Cu網表面上沉積SPAN和Mo原子來製備。 然後,在惰性氣氛下以700℃進行熱處理。製備的MoSx-cPAN/Cu網狀電催化劑能夠在350mV的過電位下產生100 mA/cm2的電流密度。除了Mo原子的4d軌道的高空位之外,該活性歸因於CuS作為基質的形成。
    在第三項研究中,我們使用臨場拉曼技術研究氫氧化反應(HOR)的機制。目前尚未清楚地理解AEMFC中工作原理的反應機制。理解HER/HOR的鹼性反應機制對於設計析氫/氧化反應的催化劑是重要的。因此,我們使用臨場拉曼技術提出HOR在鹼性介質中的通用機制。 根據臨場拉曼光譜,在所有施加電位下發現了Pt觸媒表面上吸附的OH物質,且吸附的OH(OHad)的量隨過電位增加而增加。通過臨場拉曼光譜吸附OH物種數據,在碳乘載鉑觸媒電極上提出在酸鹼環境下,反應速率和氫氧化反應機理的關係。


    Energy production and its storage are vital for the economic growth of the society. Consequently, the scientific communities are intended to develop alternatives, green, and renewable energy. Hydrogen is one of the most attractive and environmentally benign energy. Its production electrochemically from water at lowest overpotential is one of a research area and many research efforts have been made. Platinum (Pt) and its alloys are the state of- the-art electrocatalysts for the hydrogen evolution at lower overpotential relatively. However, its shortage and high cost mainly limit its applications. Recently, scholars are striving to replace the precious Pt electrocatalysts with the earth-abundant and inexpensive transition metal of sulfides, selenides, nitrides, and phosphides.
    Non noble materials toward hydrogen evolution reaction (HER) are fundamental for practical implementation; however they are unable to produce high current density at lower overpotential as Pt metals. Now a day, 2D transition metal dichalcogenides (TMDs) are main research interest because of their activity and stability in applications of catalysis.
    Three approaches have been conducted in this research. In our first approach, immobilized single molecular MoS2 electrocatalyst on the surface of carbonized polyacrylonitrile (cPAN) was fabricated. It exhibits high catalysis toward HER. A single molecular MoS2 was prepared on the cPAN surface through electrochemical reaction of sulfur polyacrylonitrile (SPAN) with Li metal to form Li2S-cPAN. Then, the immobilized single molecular MoS2 on the surface of cPAN was formed after Li2S-cPAN reacting with Mo ions. The immobilized single MoS2 has no metal-metal scattering on the EXAFS spectra and it has a size of 1.31 nm. A low coordination number and maximum utilization of a single MoS2 molecule surface enable MoS2-cPAN to demonstrate electrochemical performance significantly better than that of bulk MoS2 by two orders of exchange current density (jo) and turnover frequency at the hydrogen evolution reaction.

    The second approach demonstrated the increasing of exchange current density by incorporating the transition metal atoms to MoS2 nanofilms composite by induces extra active site or asymmetric charge transfer. Herein, the MoSx- cPAN/Cu mesh electrocatalyst is prepared by the deposition of SPAN and Mo atoms on the surface of Cu mesh via deep coating and electrochemical techniques, respectively. Then, it is treated at 700 oC under inert atmosphere. The as prepared MoSx-cPAN/Cu mesh electrocatalyst able to produce 100 mA/cm2 at 350 mV. The activity is attributed from the formation of CuS as a matrix in addition to high vacancy of 4d orbital of Mo atom.
    In third approach, we studied the mechanism of hydrogen oxidation reaction using in situ Raman technique. The mechanisms for the reactions of the working principles in the AEMFC are not clearly understood yet. Understanding the mechanisms of HER/HOR is important to design appropriate catalyst for hydrogen evolution/oxidation reactions. Thus, herein we proposed universal mechanism of HOR in basic media using in situ Raman technique. From the spectra of in situ Raman, an adsorbed OH- species on Pt surface have been found at all applied potential and the amounts of adsorbed OH- (OHad) are increased with potentials. The rate of chemical reaction at equilibrium and the mechanism of hydrogen oxidation reaction have been proposed on Pt/C electrode from the data of adsorbed hydroxyl (OHad) species

    中文摘要 i Abstract iii Acknowledgments v Table of content vi List of Figures x List of Tables xvii List of Units and Abbreviation xviii Chapter 1: General Background 1 1.1 Energy, Its Sources and Storage 1 Chapter 2: Hydrogen Evolution /Oxidation Reaction (HER / HOR) 3 2.1. Methods of Hydrogen Evolution Reaction 4 2.1.1. Photocatalytic Water Splitting 4 2.1.2. Electrochemical Water Splitting 5 2.2. HER Activity Measuring Parameters 7 2.2.1. Onset overpotential and Overpotential 7 2.2.2. Exchange Current Density 8 2.2.3. Tafel slope 8 2.2.4. Turnover Frequency (TOF) 9 2.2.5. Gibbs free energy 10 2.3. Mechanism of HER /HOR 11 2.3.1. HER /HOR in Acidic Electrolyte 11 2.3.2. HER in Basic Electrolyte 12 2.3.3. HOR in Basic Electrolyte 13 2.4. Challenges of Hydrogen Evolution Reaction 14 2.5. Materials as Electrocatalyst for HER 15 2.5.1. Precious Metal Based Electrocatalyst 15 2.5.2. Non-Precious Metals and Their Alloys as Electrocatalyst 17 2.5.3. Transition Metal Carbide, Phosphides and Nitrides 18 2.5.4. Transition Metal Dichalcogenides (TMDCs) 20 2.5.5. Single Atom Catalysts (SACs) 25 2.6. Motivation and Objectives of the Study 29 2.6.1. Motivation 29 2.6.2. Objectives 30 Chapter 3: Experimental Section and Characterization 31 3.1 General Experimental Sections 31 3.1.1 Chemicals and Reagents 31 3.1.2 Synthesis of SPAN (Sulfur- Polyacrylonitrile) 32 3.1.3 Synthesis of Li2S-cPAN 34 3.1.4 Synthesis of MoS2-cPAN 34 3.1.5 Synthesis of MoSx-cPAN/Cu mesh 35 3.2 Sample Preparation for Characterizations and Measurements 37 3.3 Materials Structure Characterization 37 3.3.1 Physical Characterization Techniques 37 3.3.2 Electrochemical Measurement 39 Chapter 4: Synthesis of Single Molecular Molybdenum Disulfide on Carbonized Polyacrylonitrile for Cathode Electrolyzer 41 4.1 Introduction 41 4.2 Results and Discussion 42 4.2.1 Materials Characterization 42 4.2.2 Electrochemical Performance 58 4.3 Summary 64 Chapter 5: MoSx-cPAN/ Cu mesh as Efficient Electrocatalyst to Hydrogen Evolution Reaction 65 5.1 Introduction 65 5.2 Results and discussion 66 5.2.1 Material characterization 66 5.2.2 Electrochemical Performance 72 5.3 Summary 76 Chapter 6: Universal Rate Equation and Mechanism for Hydrogen Oxidation Reaction 77 6.1 Introduction 77 6.2 Results and Discussion 81 6.3 Summary 91 Chapter 7: Summary and Perspectives 92 7.1 Summary 92 7.2 Perspective 94 References 95 Appendices 125 Approach I 125 Approach II 129 Approach III 130 List of Research Papers 131 Conference Presentations 132

    1. Dutta, S., A review on production, storage of hydrogen and its utilization as an energy resource. Journal of Industrial and Engineering Chemistry 2014, 20 (4), 1148-1156.
    2. Momirlan, M.; Veziroglu, T., Current status of hydrogen energy. Renewable and sustainable energy reviews 2002, 6 (1-2), 141-179.
    3. Smith, S. C.; Sen, P.; Kroposki, B. In Advancement of energy storage devices and applications in electrical power system, 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, IEEE: 2008; pp 1-8.
    4. Letcher, T. M.; Law, R.; Reay, D., Storing energy: with special reference to renewable energy sources. Elsevier Oxford: 2016; Vol. 86.
    5. Li, X.; Hao, X.; Abudula, A.; Guan, G., Nanostructured catalysts for electrochemical water splitting: current state and prospects. Journal of Materials Chemistry A 2016, 4 (31), 11973-12000.
    6. Li, Y.; Cain, J. D.; Hanson, E. D.; Murthy, A. A.; Hao, S.; Shi, F.; Li, Q.; Wolverton, C.; Chen, X.; Dravid, V. P., Au@MoS2 Core-Shell Heterostructures with Strong Light-Matter Interactions. Nano letters 2016, 16 (12), 7696-7702.
    7. Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H., MoS2 Nanoparticles Grown on Graphene: an Advanced Catalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2011, 133, 7296-9.
    8. Lu, X.; Lin, Y.; Dong, H.; Dai, W.; Chen, X.; Qu, X.; Zhang, X., One-Step Hydrothermal Fabrication of Three-dimensional MoS2 Nanoflower using Polypyrrole as Template for Efficient Hydrogen Evolution Reaction. Scientific reports 2017, 7, 42309.
    9. Ye, J.; He, F.; Nie, J.; Cao, Y.; Yang, H.; Ai, X., Sulfur/carbon nanocomposite-filled polyacrylonitrile nanofibers as a long life and high capacity cathode for lithium-sulfur batteries. Journal of Materials Chemistry A 2015, 3 (14), 7406-7412.
    10. Kucernak, A. R.; Zalitis, C., General Models for the Electrochemical Hydrogen Oxidation and Hydrogen Evolution Reactions: Theoretical Derivation and Experimental Results under Near Mass-Transport Free Conditions. The Journal of Physical Chemistry C 2016, 120 (20), 10721-10745.
    11. Li, W.; Zhang, Z.; Zhang, W.; Zou, S., MoS2 Nanosheets Supported on Hollow Carbon Spheres as Efficient Catalysts for Electrochemical Hydrogen Evolution Reaction. ACS Omega 2017, 2 (8), 5087-5094.
    12. Wang, J. X.; Zhang, Y.; Capuano, C. B.; Ayers, K. E., Ultralow charge-transfer resistance with ultralow Pt loading for hydrogen evolution and oxidation using Ru@Pt core-shell nanocatalysts. Scientific reports 2015, 5, 12220.
    13. Rand, D. A. J.; Dell, R. M., Hydrogen energy: challenges and prospects. Royal Society of Chemistry: 2007.
    14. Abe, R., Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2010, 11 (4), 179-209.
    15. Eftekhari, A., Electrocatalysts for hydrogen evolution reaction. International Journal of Hydrogen Energy 2017, 42 (16), 11053-11077.
    16. Li, G.; Zhang, D.; Qiao, Q.; Yu, Y.; Peterson, D.; Zafar, A.; Kumar, R.; Curtarolo, S.; Hunte, F.; Shannon, S.; Zhu, Y.; Yang, W.; Cao, L., All The Catalytic Active Sites of MoS2 for Hydrogen Evolution. Journal of the American Chemical Society 2016, 138 (51), 16632-16638.
    17. Grove, W. R., XXIV. On voltaic series and the combination of gases by platinum. Philosophical Magazine and Journal of Science 1839, 14 (86-87), 127-130.
    18. Acres, G. J., Recent advances in fuel cell technology and its applications. Journal of Power Sources 2001, 100 (1-2), 60-66.
    19. Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S., Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catalysis 2016, 6 (12), 8069-8097.
    20. Parsons, R., The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Transactions of the Faraday Society 1958, 54, 1053-1063.
    21. Vesborg, P. C.; Seger, B.; Chorkendorff, I., Recent Development in Hydrogen Evolution Reaction Catalysts and Their Practical Implementation. The journal of physical chemistry letters 2015, 6 (6), 951-7.
    22. Ahmad, H.; Kamarudin, S.; Minggu, L.; Kassim, M., Hydrogen from photo-catalytic water splitting process: A review. Renewable and Sustainable Energy Reviews 2015, 43, 599-610.
    23. Kumar, P.; Boukherroub, R.; Shankar, K., Sunlight-driven water-splitting using two-dimensional carbon based semiconductors. Journal of Materials Chemistry A 2018, 6 (27), 12876-12931.
    24. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37.
    25. Ismail, A. A.; Bahnemann, D. W., Photochemical splitting of water for hydrogen production by photocatalysis: a review. Solar Energy Materials and Solar Cells 2014, 128, 85-101.
    26. Ahmad, H.; Kamarudin, S. K.; Minggu, L. J.; Kassim, M., Hydrogen from photo-catalytic water splitting process: A review. Renewable and Sustainable Energy Reviews 2015, 43, 599-610.
    27. Minggu, L. J.; Wan Daud, W. R.; Kassim, M. B., An overview of photocells and photoreactors for photoelectrochemical water splitting. International Journal of Hydrogen Energy 2010, 35 (11), 5233-5244.
    28. Maeda, K., Photocatalytic water splitting using semiconductor particles: History and recent developments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2011, 12 (4), 237-268.
    29. Roger, I.; Shipman, M. A.; Symes, M. D., Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry 2017, 1 (1), 0003.
    30. Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F., Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials. ACS Catalysis 2014, 4 (11), 3957-3971.
    31. Seo, B.; Joo, S. H., Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction. Nano convergence 2017, 4 (1), 19.
    32. Yang, L.; Zhou, W.; Hou, D.; Zhou, K.; Li, G.; Tang, Z.; Li, L.; Chen, S., Porous metallic MoO2-supported MoS2 nanosheets for enhanced electrocatalytic activity in the hydrogen evolution reaction. Nanoscale 2015, 7 (12), 5203-8.
    33. Wang, J.; Xu, F.; Jin, H.; Chen, Y.; Wang, Y., Non‐Noble Metal‐based Carbon Composites in Hydrogen Evolution Reaction: Fundamentals to Applications. Advanced materials 2017, 29 (14), 1605838.
    34. Morales-Guio, C. G.; Stern, L. A.; Hu, X., Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society reviews 2014, 43 (18), 6555-69.
    35. Yao Zheng, Y. J., Mietek Jaroniec, and Shi Zhang Qiao, Advancing the Electrochemistry of the HydrogenEvolution Reaction through Combining Experiment and Theory. Angew. Chem. Int. Ed. 2015, 54, 52 – 65.
    36. Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K., Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Scientific reports 2015, 5, 13801.
    37. Fang, Y.-H.; Liu, Z.-P., Tafel Kinetics of Electrocatalytic Reactions: From Experiment to First-Principles. ACS Catalysis 2014, 4 (12), 4364-4376.
    38. Cummins, D. R.; Martinez, U.; Sherehiy, A.; Kappera, R.; Martinez-Garcia, A.; Schulze, R. K.; Jasinski, J.; Zhang, J.; Gupta, R. K.; Lou, J.; Chhowalla, M.; Sumanasekera, G.; Mohite, A. D.; Sunkara, M. K.; Gupta, G., Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction. Nature communications 2016, 7, 11857.
    39. Sheng, W.; Gasteiger, H. A.; Shao-Horn, Y., Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes. Journal of The Electrochemical Society 2010, 157 (11), B1529.
    40. Chen, Z.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F., Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano letters 2011, 11 (10), 4168-75.
    41. Benson, J.; Li, M.; Wang, S.; Wang, P.; Papakonstantinou, P., Electrocatalytic Hydrogen Evolution Reaction on Edges of a Few Layer Molybdenum Disulfide Nanodots. ACS applied materials & interfaces 2015, 7 (25), 14113-22.
    42. Sahraie, N. R.; Kramm, U. I.; Steinberg, J.; Zhang, Y.; Thomas, A.; Reier, T.; Paraknowitsch, J.-P.; Strasser, P., Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts. Nature communications 2015, 6, 8618.
    43. Ding, Q.; Song, B.; Xu, P.; Jin, S., Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS2 and Related Compounds. Chem 2016, 1 (5), 699-726.
    44. Zhuang, H.; Tkalych, A. J.; Carter, E. A., Surface Energy as a Descriptor of Catalytic Activity. The Journal of Physical Chemistry C 2016, 120 (41), 23698-23706.
    45. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I., Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. science 2007, 317 (5834), 100-102.
    46. Zheng, Y.; Jiao, Y.; Zhu, Y.; Li, L. H.; Han, Y.; Chen, Y.; Du, A.; Jaroniec, M.; Qiao, S. Z., Hydrogen evolution by a metal-free electrocatalyst. Nature communications 2014, 5, 3783.
    47. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z., Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society reviews 2015, 44 (8), 2060-86.
    48. Zheng, J.; Sheng, W.; Zhuang, Z.; Xu, B.; Yan, Y., Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Science advances 2016, 2 (3), e1501602.
    49. Barber, J.; Conway, B., Structural specificity of the kinetics of the hydrogen evolution reaction on the low-index surfaces of Pt single-crystal electrodes in 0.5 M dm− 3 NaOH. Journal of Electroanalytical Chemistry 1999, 461 (1-2), 80-89.
    50. Vetter, K. J., Electrochemical kinetics: theoretical aspects. Elsevier: 2013.
    51. Sheng, W.; Gasteiger, H. A.; Shao-Horn, Y., Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. Journal of The Electrochemical Society 2010, 157 (11), B1529-B1536.
    52. Durst, J.; Siebel, A.; Simon, C.; Hasche, F.; Herranz, J.; Gasteiger, H., New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy & Environmental Science 2014, 7 (7), 2255-2260.
    53. Elbert, K.; Hu, J.; Ma, Z.; Zhang, Y.; Chen, G.; An, W.; Liu, P.; Isaacs, H. S.; Adzic, R. R.; Wang, J. X., Elucidating hydrogen oxidation/evolution kinetics in base and acid by enhanced activities at the optimized Pt shell thickness on the Ru core. ACS Catalysis 2015, 5 (11), 6764-6772.
    54. Rheinländer, P. J.; Herranz, J.; Durst, J.; Gasteiger, H. A., Kinetics of the hydrogen oxidation/evolution reaction on polycrystalline platinum in alkaline electrolyte reaction order with respect to hydrogen pressure. Journal of The Electrochemical Society 2014, 161 (14), F1448-F1457.
    55. Strmcnik, D.; Uchimura, M.; Wang, C.; Subbaraman, R.; Danilovic, N.; Van Der Vliet, D.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M., Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nature chemistry 2013, 5 (4), 300.
    56. Alesker, M.; Page, M.; Shviro, M.; Paska, Y.; Gershinsky, G.; Dekel, D. R.; Zitoun, D., Palladium/nickel bifunctional electrocatalyst for hydrogen oxidation reaction in alkaline membrane fuel cell. Journal of Power Sources 2016, 304, 332-339.
    57. Alia, S. M.; Pivovar, B. S.; Yan, Y., Platinum-coated copper nanowires with high activity for hydrogen oxidation reaction in base. Journal of the American Chemical Society 2013, 135 (36), 13473-13478.
    58. Cong, Y.; Yi, B.; Song, Y., Hydrogen oxidation reaction in alkaline media: From mechanism to recent electrocatalysts. Nano Energy 2018, 44, 288-303.
    59. Tahira, A.; Ibupoto, Z. H.; Mazzaro, R.; You, S.; Morandi, V.; Natile, M. M.; Vagin, M.; Vomiero, A., Advanced electrocatalysts for hydrogen evolution reaction based on core shell MoS2/TiO2 nanostructures in acidic and alkaline media. ACS Applied Energy Materials 2019.3,2053-2062
    60. Yu, X.; Ye, S., Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst. Journal of Power Sources 2007, 172 (1), 145-154.
    61. Gong, M.; Zhou, W.; Tsai, M.-C.; Zhou, J.; Guan, M.; Lin, M.-C.; Zhang, B.; Hu, Y.; Wang, D.-Y.; Yang, J., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nature communications 2014, 5, 4695.
    62. Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A.; Stamenkovic, V.; Markovic, N. M., Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni (OH)2/metal catalysts. Angewandte Chemie International Edition 2012, 51 (50), 12495-12498.
    63. Mahmood, N.; Yao, Y.; Zhang, J. W.; Pan, L.; Zhang, X.; Zou, J. J., Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Advanced Science 2018, 5 (2), 1700464.
    64. Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z., The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angewandte Chemie International Edition 2018, 57 (26), 7568-7579.
    65. Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M., Energy and fuels from electrochemical interfaces. Nature materials 2017, 16 (1), 57.
    66. Luo, Y.; Li, X.; Cai, X.; Zou, X.; Kang, F.; Cheng, H.-M.; Liu, B., Two-dimensional MoS2 confined Co (OH) 2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS nano 2018, 12 (5), 4565-4573.
    67. Subbaraman, R.; Tripkovic, D.; Chang, K.-C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M., Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr (oxy) oxide catalysts. Nature materials 2012, 11 (6), 550.
    68. Subbaraman, R.; Tripkovic, D.; Strmcnik, D.; Chang, K.-C.; Uchimura, M.; Paulikas, A. P.; Stamenkovic, V.; Markovic, N. M., Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni (OH)2-Pt interfaces. Science 2011, 334 (6060), 1256-1260.
    69. Wang, D. Y.; Gong, M.; Chou, H. L.; Pan, C. J.; Chen, H. A.; Wu, Y.; Lin, M. C.; Guan, M.; Yang, J.; Chen, C. W.; Wang, Y. L.; Hwang, B. J.; Chen, C. C.; Dai, H., Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nanotubes for hydrogen evolution reaction. Journal of the American Chemical Society 2015, 137 (4), 1587-92.
    70. Liu, W.; Hu, E.; Jiang, H.; Xiang, Y.; Weng, Z.; Li, M.; Fan, Q.; Yu, X.; Altman, E. I.; Wang, H., A highly active and stable hydrogen evolution catalyst based on pyrite-structured cobalt phosphosulfide. Nature communications 2016, 7, 10771.
    71. Rowley-Neale, S. J.; Foster, C. W.; Smith, G. C.; Brownson, D. A. C.; Banks, C. E., Mass-producible 2D-MoSe2 bulk modified screen-printed electrodes provide significant electrocatalytic performances towards the hydrogen evolution reaction. Sustainable Energy Fuels 2017, 1 (1), 74-83.
    72. Wang, H.; Kong, D.; Johanes, P.; Cha, J. J.; Zheng, G.; Yan, K.; Liu, N.; Cui, Y., MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano letters 2013, 13 (7), 3426-33.
    73. Xie, J.; Li, S.; Zhang, X.; Zhang, J.; Wang, R.; Zhang, H.; Pan, B.; Xie, Y., Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem. Sci. 2014, 5 (12), 4615-4620.
    74. Pu, Z.; Luo, Y.; Asiri, A. M.; Sun, X., Efficient Electrochemical Water Splitting Catalyzed by Electrodeposited Nickel Diselenide Nanoparticles Based Film. ACS applied materials & interfaces 2016, 8 (7), 4718-23.
    75. Mahmood, J.; Li, F.; Jung, S.-M.; Okyay, M. S.; Ahmad, I.; Kim, S.-J.; Park, N.; Jeong, H. Y.; Baek, J.-B., An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat Nano 2017, 12 (5), 441-446.
    76. Gong, M.; Zhou, W.; Tsai, M. C.; Zhou, J.; Guan, M.; Lin, M. C.; Zhang, B.; Hu, Y.; Wang, D. Y.; Yang, J.; Pennycook, S. J.; Hwang, B. J.; Dai, H., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nature communications 2014, 5, 4695.
    77. Zeng, M.; Li, Y., Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A 2015, 3 (29), 14942-14962.
    78. Wang, L.; Mahoney, E. G.; Zhao, S.; Yang, B.; Chen, J. G., Low loadings of platinum on transition metal carbides for hydrogen oxidation and evolution reactions in alkaline electrolytes. Chemical communications 2016, 52 (18), 3697-700.
    79. Esposito, D. V.; Chen, J. G., Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: opportunities and limitations. Energy & Environmental Science 2011, 4 (10), 3900.
    80. Sun, W.; Wang, Z.; Wang, Q.; Zaman, W. Q.; Cao, L.; Gong, X.-Q.; Yang, J., Strategies of alloying effect for regulating Pt-based H 2-SCR catalytic activity. Chemical communications 2018, 54 (68), 9502-9505.
    81. Li, K.; Li, Y.; Wang, Y.; Ge, J.; Liu, C.; Xing, W., Enhanced electrocatalytic performance for the hydrogen evolution reaction through surface enrichment of platinum nanoclusters alloying with ruthenium in situ embedded in carbon. Energy & Environmental Science 2018, 11 (5), 1232-1239.
    82. Holton, O. T.; Stevenson, J. W., Journal Archive. Platinum Metals Rev 2013, 57 (4), 259.
    83. Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I. B.; Norskov, J. K., Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature materials 2006, 5 (11), 909-13.
    84. Holton, O. T.; Stevenson, J. W., The role of platinum in proton exchange membrane fuel cells. Platinum Metals Review 2013, 57 (4), 259-271.
    85. Deng, J.; Ren, P.; Deng, D.; Bao, X., Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angewandte Chemie International Edition 2015, 54 (7), 2100-2104.
    86. Tavakkoli, M.; Kallio, T.; Reynaud, O.; Nasibulin, A. G.; Johans, C.; Sainio, J.; Jiang, H.; Kauppinen, E. I.; Laasonen, K., Single‐shell carbon‐encapsulated iron nanoparticles: synthesis and high electrocatalytic activity for hydrogen evolution reaction. Angewandte Chemie International Edition 2015, 54 (15), 4535-4538.
    87. Santos, D. M.; Sequeira, C. A.; Figueiredo, J. L., Hydrogen production by alkaline water electrolysis. Química Nova 2013, 36 (8), 1176-1193.
    88. Raj, I. A.; Vasu, K., Transition metal-based hydrogen electrodes in alkaline solution—electrocatalysis on nickel based binary alloy coatings. Journal of applied electrochemistry 1990, 20 (1), 32-38.
    89. Jakšić, M. M., Hypo–hyper-d-electronic interactive nature of synergism in catalysis and electrocatalysis for hydrogen reactions. Electrochimica Acta 2000, 45 (25-26), 4085-4099.
    90. Chen, W.-F.; Muckerman, J. T.; Fujita, E., Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chemical communications 2013, 49 (79), 8896-8909.
    91. Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G., Trends in the chemical properties of early transition metal carbide surfaces: a density functional study. Catalysis Today 2005, 105 (1), 66-73.
    92. Chen, J. G., Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization, and reactivities. Chemical reviews 1996, 96 (4), 1477-1498.
    93. Levy, R.; Boudart, M., Platinum-like behavior of tungsten carbide in surface catalysis. science 1973, 181 (4099), 547-549.
    94. Stottlemyer, A. L.; Weigert, E. C.; Chen, J. G., Tungsten carbides as alternative electrocatalysts: from surface science studies to fuel cell evaluation. Industrial & Engineering Chemistry Research 2010, 50 (1), 16-22.
    95. Garcia‐Esparza, A. T.; Cha, D.; Ou, Y.; Kubota, J.; Domen, K.; Takanabe, K., Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting. ChemSusChem 2013, 6 (1), 168-181.
    96. Hunt, S. T.; Nimmanwudipong, T.; Román‐Leshkov, Y., Engineering Non‐sintered, Metal‐Terminated Tungsten Carbide Nanoparticles for Catalysis. Angewandte Chemie International Edition 2014, 53 (20), 5131-5136.
    97. Liao, L.; Wang, S.; Xiao, J.; Bian, X.; Zhang, Y.; Scanlon, M. D.; Hu, X.; Tang, Y.; Liu, B.; Girault, H. H., A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy & Environmental Science 2014, 7 (1), 387-392.
    98. Oyama, S. T.; Gott, T.; Zhao, H.; Lee, Y.-K., Transition metal phosphide hydroprocessing catalysts: A review. Catalysis Today 2009, 143 (1-2), 94-107.
    99. Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E., Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. Journal of the American Chemical Society 2013, 135 (25), 9267-9270.
    100. Feng, L.; Vrubel, H.; Bensimon, M.; Hu, X., Easily-prepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution. Physical Chemistry Chemical Physics 2014, 16 (13), 5917-5921.
    101. Yang, X.; Lu, A.-Y.; Zhu, Y.; Hedhili, M. N.; Min, S.; Huang, K.-W.; Han, Y.; Li, L.-J., CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation. Nano Energy 2015, 15, 634-641.
    102. Song, J.; Li, G.; Xiong, F.; Gao, X., Synergistic effect of molybdenum nitride and carbon nanotubes on electrocatalysis for dye-sensitized solar cells. Journal of Materials Chemistry 2012, 22 (38), 20580-20585.
    103. Zheng, W.; Cotter, T. P.; Kaghazchi, P.; Jacob, T.; Frank, B.; Schlichte, K.; Zhang, W.; Su, D. S.; Schüth, F.; Schlögl, R., Experimental and theoretical investigation of molybdenum carbide and nitride as catalysts for ammonia decomposition. Journal of the American Chemical Society 2013, 135 (9), 3458-3464.
    104. Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y.; Adzic, R. R., Hydrogen‐evolution catalysts based on non‐noble metal nickel–molybdenum nitride nanosheets. Angewandte Chemie International Edition 2012, 51 (25), 6131-6135.
    105. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A., 2D transition metal dichalcogenides. Nature Reviews Materials 2017, 2 (8), 17033.
    106. Gao, G.; Jiao, Y.; Ma, F.; Jiao, Y.; Waclawik, E.; Du, A., Charge Mediated Semiconducting-to-Metallic Phase Transition in Molybdenum Disulfide Monolayer and Hydrogen Evolution Reaction in New 1T′ Phase. The Journal of Physical Chemistry C 2015, 119 (23), 13124-13128.
    107. Shi, Y.; Zhou, W.; Lu, A. Y.; Fang, W.; Lee, Y. H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L. J.; Idrobo, J. C.; Kong, J., van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano letters 2012, 12 (6), 2784-91.
    108. Kong, D.; Wang, H.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y., Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano letters 2013, 13 (3), 1341-7.
    109. Tributsch, H.; Bennett, J., Electrochemistry and photochemistry of MoS2 layer crystals. I. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 81 (1), 97-111.
    110. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K., Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. Journal of the American Chemical Society 2005, 127 (15), 5308-5309.
    111. Ling, C.; Ouyang, Y.; Shi, L.; Yuan, S.; Chen, Q.; Wang, J., Template-Grown MoS2 Nanowires Catalyze the Hydrogen Evolution Reaction: Ultralow Kinetic Barriers with High Active Site Density. ACS Catalysis 2017, 7 (8), 5097-5102.
    112. Xie, J.; Zhang, H.; Li, S.; Wang, R.; Sun, X.; Zhou, M.; Zhou, J.; Lou, X. W.; Xie, Y., Defect‐rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Advanced materials 2013, 25 (40), 5807-5813.
    113. Kibsgaard, J.; Chen, Z.; Reinecke, B. N.; Jaramillo, T. F., Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nature materials 2012, 11 (11), 963-9.
    114. Jiang, Y.; Wang, D.; Li, J.; Li, M.; Pan, Z.; Ma, H.; Lv, G.; Qu, W.; Wang, L.; Tian, Z., Designing MoS2 nanocatalysts with increased exposure of active edge sites for anthracene hydrogenation reaction. Catalysis Science & Technology 2017, 7 (14), 2998-3007.
    115. Kumar, N. A.; Dar, M. A.; Gul, R.; Baek, J.-B., Graphene and molybdenum disulfide hybrids: synthesis and applications. Materials Today 2015, 18 (5), 286-298.
    116. Fan, X.; Xu, P.; Zhou, D.; Sun, Y.; Li, Y. C.; Nguyen, M. A.; Terrones, M.; Mallouk, T. E., Fast and Efficient Preparation of Exfoliated 2H MoS2 Nanosheets by Sonication-Assisted Lithium Intercalation and Infrared Laser-Induced 1T to 2H Phase Reversion. Nano letters 2015, 15 (9), 5956-60.
    117. Ye, G.; Gong, Y.; Lin, J.; Li, B.; He, Y.; Pantelides, S. T.; Zhou, W.; Vajtai, R.; Ajayan, P. M., Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction. Nano letters 2016, 16 (2), 1097-103.
    118. Wang, H.; Tsai, C.; Kong, D.; Chan, K.; Abild-Pedersen, F.; Nørskov, J. K.; Cui, Y., Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Research 2015, 8 (2), 566-575.
    119. Luo, Y.; Li, X.; Cai, X.; Zou, X.; Kang, F.; Cheng, H. M.; Liu, B., Two-Dimensional MoS2 Confined Co(OH)2 Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes. ACS nano 2018, 12 (5), 4565-4573.
    120. Wang, Q.; Zhao, Z. L.; Dong, S.; He, D. S.; Lawrence, M. J.; Han, S. B.; Cai, C.; Xiang, S. H.; Rodriguez, P.; Xiang, B.; Wang, Z. G.; Liang, Y. Y.; Gu, M., Design of Active Nickel Single-Atom Decorated MoS2 as a pH-Universal Catalyst for Hydrogen Evolution Reaction. Nano Energy 2018, 53, 458-467.
    121. Pető, J.; Ollár, T.; Vancsó, P.; Popov, Z. I.; Magda, G. Z.; Dobrik, G.; Hwang, C.; Sorokin, P. B.; Tapasztó, L., Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions. Nature chemistry 2018, 10 (12), 1246.
    122. Li, H.; Tsai, C.; Koh, A. L.; Cai, L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F.; Norskov, J. K.; Zheng, X., Corrigendum: Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature materials 2016, 15 (3), 364.
    123. Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L.; Jin, S., Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. Journal of the American Chemical Society 2013, 135 (28), 10274-7.
    124. Pető, J.; Ollár, T.; Vancsó, P.; Popov, Z. I.; Magda, G. Z.; Dobrik, G.; Hwang, C.; Sorokin, P. B.; Tapasztó, L., Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions. Nature chemistry 2018.
    125. Ji, L.; Yan, P.; Zhu, C.; Ma, C.; Wu, W.; Wei, C.; Shen, Y.; Chu, S.; Wang, J.; Du, Y., One-pot synthesis of porous 1T-phase MoS2 integrated with single-atom Cu doping for enhancing electrocatalytic hydrogen evolution reaction. Applied Catalysis B: Environmental 2019, 251, 87-93.
    126. Chi, J.-Q.; Gao, W.-K.; Lin, J.-H.; Dong, B.; Yan, K.-L.; Qin, J.-F.; Liu, B.; Chai, Y.-M.; Liu, C.-G., N, P dual-doped hollow carbon spheres supported MoS2 hybrid electrocatalyst for enhanced hydrogen evolution reaction. Catalysis Today 2019, 330, 259-267.
    127. Py, M.; Haering, R., Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Canadian Journal of Physics 1983, 61 (1), 76-84.
    128. Nidola, A.; Schira, R., New sulphide coatings for hydrogen evolution in KOH electrolysis. International journal of hydrogen energy 1986, 11 (7), 449-454.
    129. Chen, J.; Kuriyama, N.; Yuan, H.; Takeshita, H. T.; Sakai, T., Electrochemical hydrogen storage in MoS2 nanotubes. Journal of the American Chemical Society 2001, 123 (47), 11813-11814.
    130. Jaramillo, T. F.; Bonde, J.; Zhang, J.; Ooi, B.-L.; Andersson, K.; Ulstrup, J.; Chorkendorff, I., Hydrogen evolution on supported incomplete cubane-type [Mo3S4]4+ electrocatalysts. The Journal of Physical Chemistry C 2008, 112 (45), 17492-17498.
    131. Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H., MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. Journal of the American Chemical Society 2011, 133 (19), 7296-7299.
    132. Chen, Z.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F., Core–shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano letters 2011, 11 (10), 4168-4175.
    133. Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M., Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano letters 2013, 13 (12), 6222-6227.
    134. Shi, J.; Ma, D.; Han, G.-F.; Zhang, Y.; Ji, Q.; Gao, T.; Sun, J.; Song, X.; Li, C.; Zhang, Y., Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS nano 2014, 8 (10), 10196-10204.
    135. Zhang, X.; Meng, F.; Mao, S.; Ding, Q.; Shearer, M. J.; Faber, M. S.; Chen, J.; Hamers, R. J.; Jin, S., Amorphous MoS x Cl y electrocatalyst supported by vertical graphene for efficient electrochemical and photoelectrochemical hydrogen generation. Energy & Environmental Science 2015, 8 (3), 862-868.
    136. Tran, P. D.; Tran, T. V.; Orio, M.; Torelli, S.; Truong, Q. D.; Nayuki, K.; Sasaki, Y.; Chiam, S. Y.; Yi, R.; Honma, I., Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nature materials 2016, 15 (6), 640.
    137. Staszak-Jirkovský, J.; Malliakas, C. D.; Lopes, P. P.; Danilovic, N.; Kota, S. S.; Chang, K.-C.; Genorio, B.; Strmcnik, D.; Stamenkovic, V. R.; Kanatzidis, M. G., Design of active and stable Co–Mo–S x chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nature materials 2016, 15 (2), 197.
    138. Li, H.; Tsai, C.; Koh, A. L.; Cai, L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F., Activating and optimizing MoS 2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nature materials 2016, 15 (1), 48.
    139. Liu, Q.; Fang, Q.; Chu, W.; Wan, Y.; Li, X.; Xu, W.; Habib, M.; Tao, S.; Zhou, Y.; Liu, D., Electron-doped 1T-MoS2 via interface engineering for enhanced electrocatalytic hydrogen evolution. Chemistry of Materials 2017, 29 (11), 4738-4744.
    140. Zhang, L.; Jia, Y.; Gao, G.; Yan, X.; Chen, N.; Chen, J.; Soo, M. T.; Wood, B.; Yang, D.; Du, A., Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 2018, 4 (2), 285-297.
    141. Zhang, Y.; Guo, L.; Tao, L.; Lu, Y.; Wang, S., Defect‐Based Single‐Atom Electrocatalysts. Small Methods 2018, 1800406.
    142. Li, J.-C.; Wei, Z.; Liu, D.; Du, D.; Lin, Y.; Shao, M., Dispersive Single-Atom Metals Anchored on Functionalized Nanocarbons for Electrochemical Reactions. Topics in current chemistry 2019, 377 (1), 4.
    143. Li, T.; Liu, J.; Song, Y.; Wang, F., Photochemical solid-phase synthesis of platinum single atoms on nitrogen-doped carbon with high loading as bifunctional catalysts for hydrogen evolution and oxygen reduction reactions. ACS Catalysis 2018, 8 (9), 8450-8458.
    144. Zhang, B.; Liu, J.; Wang, J.; Ruan, Y.; Ji, X.; Xu, K.; Chen, C.; Wan, H.; Miao, L.; Jiang, J., Interface engineering: the Ni (OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy 2017, 37, 74-80.
    145. Wang, Q.; Zhao, Z. L.; Dong, S.; He, D.; Lawrence, M. J.; Han, S.; Cai, C.; Xiang, S.; Rodriguez, P.; Xiang, B., Design of active nickel single-atom decorated MoS2 as a pH-universal catalyst for hydrogen evolution reaction. Nano Energy 2018, 53, 458-467.
    146. Wang, J.; Yang, W.; Liu, J., CoP 2 nanoparticles on reduced graphene oxide sheets as a super-efficient bifunctional electrocatalyst for full water splitting. Journal of Materials Chemistry A 2016, 4 (13), 4686-4690.
    147. Tang, C.; Gan, L.; Zhang, R.; Lu, W.; Jiang, X.; Asiri, A. M.; Sun, X.; Wang, J.; Chen, L., Ternary Fe x Co1–x P Nanowire Array as a Robust Hydrogen Evolution Reaction Electrocatalyst with Pt-like Activity: Experimental and Theoretical Insight. Nano letters 2016, 16 (10), 6617-6621.
    148. Liu, Y.; Yu, G.; Li, G. D.; Sun, Y.; Asefa, T.; Chen, W.; Zou, X., Coupling Mo2C with Nitrogen‐Rich Nanocarbon Leads to Efficient Hydrogen‐Evolution Electrocatalytic Sites. Angewandte Chemie International Edition 2015, 54 (37), 10752-10757.
    149. Fan, X.; Peng, Z.; Ye, R.; Zhou, H.; Guo, X., M3C (M: Fe, Co, Ni) nanocrystals encased in graphene nanoribbons: an active and stable bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. ACS nano 2015, 9 (7), 7407-7418.
    150. Zou, P.; Li, J.; Zhang, Y.; Liang, C.; Yang, C.; Fan, H. J., Magnetic-field-induced rapid synthesis of defect-enriched Ni-Co nanowire membrane as highly efficient hydrogen evolution electrocatalyst. Nano Energy 2018, 51, 349-357.
    151. Ito, Y.; Ohto, T.; Hojo, D.; Wakisaka, M.; Nagata, Y.; Chen, L.; Hu, K.; Izumi, M.; Fujita, J.-i.; Adschiri, T., Cooperation between holey graphene and NiMo alloy for hydrogen evolution in an acidic electrolyte. ACS Catalysis 2018, 8 (4), 3579-3586.
    152. Su, J.; Yang, Y.; Xia, G.; Chen, J.; Jiang, P.; Chen, Q., Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media. Nature communications 2017, 8, 14969.
    153. Yu, L.; Song, S.; McElhenny, B.; Ding, F.; Luo, D.; Yu, Y.; Chen, S.; Ren, Z., A universal synthesis strategy to make metal nitride electrocatalysts for hydrogen evolution reaction. Journal of Materials Chemistry A 2019.
    154. Wang, T.; Wang, X.; Liu, Y.; Zheng, J.; Li, X., A highly efficient and stable biphasic nanocrystalline Ni–Mo–N catalyst for hydrogen evolution in both acidic and alkaline electrolytes. Nano Energy 2016, 22, 111-119.
    155. Wang, J., Yang, J., Xie, J. and Xu, N, A Novel Conductive Polymer–Sulfur Composite Cathode Material for Rechargeable Lithium Batteries. Adv. Mater (2002), 14, 963-965.
    156. Wang, X.; Qian, Y.; Wang, L.; Yang, H.; Li, H.; Zhao, Y.; Liu, T., Sulfurized Polyacrylonitrile Cathodes with High Compatibility in Both Ether and Carbonate Electrolytes for Ultrastable Lithium–Sulfur Batteries. Advanced Functional Materials 2019, 1902929.
    157. Fanous, J.; Wegner, M.; Grimminger, J.; Andresen, A. n.; Buchmeiser, M. R., Structure-related electrochemistry of sulfur-poly (acrylonitrile) composite cathode materials for rechargeable lithium batteries. Chemistry of Materials 2011, 23 (22), 5024-5028.
    158. Zhang, S., Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery. Energies 2014, 7 (7), 4588-4600.
    159. Wang, Y.; Xu, L.; Wang, M.; Pang, W.; Ge, X., Structural identification of polyacrylonitrile during thermal treatment by selective 13C labeling and solid-state 13C NMR spectroscopy. Macromolecules 2014, 47 (12), 3901-3908.
    160. Wei, S.; Ma, L.; Hendrickson, K. E.; Tu, Z.; Archer, L. A., Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites. Journal of the American Chemical Society 2015, 137 (37), 12143-52.
    161. Seh, Z. W.; Yu, J. H.; Li, W.; Hsu, P. C.; Wang, H.; Sun, Y.; Yao, H.; Zhang, Q.; Cui, Y., Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nature communications 2014, 5, 5017.
    162. Pecoraro, T.; Chianelli, R., Hydrodesulfurization catalysis by transition metal sulfides. Journal of Catalysis 1981, 67 (2), 430-445.
    163. Zhang, G.; Liu, H.; Qu, J.; Li, J., Two-dimensional layered MoS2: rational design, properties and electrochemical applications. Energy Environ. Sci. 2016, 9 (4), 1190-1209.
    164. Yin, Y.; Han, J.; Zhang, Y.; Zhang, X.; Xu, P.; Yuan, Q.; Samad, L.; Wang, X.; Wang, Y.; Zhang, Z.; Zhang, P.; Cao, X.; Song, B.; Jin, S., Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets. Journal of the American Chemical Society 2016, 138 (25), 7965-72.
    165. Yoo, H.; Tiwari, A. P.; Lee, J.; Kim, D.; Park, J. H.; Lee, H., Cylindrical nanostructured MoS2 directly grown on CNT composites for lithium-ion batteries. Nanoscale 2015, 7 (8), 3404-9.
    166. Tsai, C.; Abild-Pedersen, F.; Norskov, J. K., Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano letters 2014, 14 (3), 1381-7.
    167. Wan, J.; Chen, W.; Jia, C.; Zheng, L.; Dong, J.; Zheng, X.; Wang, Y.; Yan, W.; Chen, C.; Peng, Q.; Wang, D.; Li, Y., Defect Effects on TiO2 Nanosheets: Stabilizing Single Atomic Site Au and Promoting Catalytic Properties. Advanced materials 2018.
    168. Pegis, M. L.; Wise, C. F.; Martin, D. J.; Mayer, J. M., Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts. Chemical reviews 2018, 118 (5), 2340-2391.
    169. Kim, J.-S.; Hwang, T. H.; Kim, B. G.; Min, J.; Choi, J. W., A Lithium-Sulfur Battery with a High Areal Energy Density. Advanced Functional Materials 2014, 24 (34), 5359-5367.
    170. Mäntymäki, M.; Hämäläinen, J.; Puukilainen, E.; Sajavaara, T.; Ritala, M.; Leskelä, M., Atomic Layer Deposition of LiF Thin Films from Lithd, Mg(thd)2, and TiF4 Precursors. Chemistry of Materials 2013, 25 (9), 1656-1663.
    171. Cai, L.; He, J.; Liu, Q.; Yao, T.; Chen, L.; Yan, W.; Hu, F.; Jiang, Y.; Zhao, Y.; Hu, T.; Sun, Z.; Wei, S., Vacancy-induced ferromagnetism of MoS2 nanosheets. Journal of the American Chemical Society 2015, 137 (7), 2622-7.
    172. Zhang, X.; Meng, F.; Mao, S.; Ding, Q.; Shearer, M. J.; Faber, M. S.; Chen, J.; Hamers, R. J.; Jin, S., Amorphous MoSxCly electrocatalyst supported by vertical graphene for efficient electrochemical and photoelectrochemical hydrogen generation. Energy Environ. Sci. 2015, 8 (3), 862-868.
    173. Saha, N.; Sarkar, A.; Ghosh, A. B.; Dutta, A. K.; Bhadu, G. R.; Paul, P.; Adhikary, B., Highly active spherical amorphous MoS2: facile synthesis and application in photocatalytic degradation of rose bengal dye and hydrogenation of nitroarenes. RSC Adv. 2015, 5 (108), 88848-88856.
    174. Youn, D. H.; Jang, J. W.; Kim, J. Y.; Jang, J. S.; Choi, S. H.; Lee, J. S., Fabrication of graphene-based electrode in less than a minute through hybrid microwave annealing. Scientific reports 2014, 4, 5492.
    175. Turner, N. H.; Single, A. M., Determination of peak positions and areas from wide-scan XPS spectra. Surface and Interface Analysis 1990, 15 (3), 215-222.
    176. Wan, J.; Chen, W.; Jia, C.; Zheng, L.; Dong, J.; Zheng, X.; Wang, Y.; Yan, W.; Chen, C.; Peng, Q.; Wang, D.; Li, Y., Defect Effects on TiO2 Nanosheets: Stabilizing Single Atomic Site Au and Promoting Catalytic Properties. Advanced materials 2018, 30 (11), 1705369
    177. Frey, M.; Zenn, R. K.; Warneke, S.; Müller, K.; Hintennach, A.; Dinnebier, R. E.; Buchmeiser, M. R., Easily Accessible, Textile Fiber-Based Sulfurized Poly(acrylonitrile) as Li/S Cathode Material: Correlating Electrochemical Performance with Morphology and Structure. ACS Energy Letters 2017, 2 (3), 595-604.
    178. Kim, Y.; Jackson, D. H.; Lee, D.; Choi, M.; Kim, T. W.; Jeong, S. Y.; Chae, H. J.; Kim, H. W.; Park, N.; Chang, H., In Situ Electrochemical Activation of Atomic Layer Deposition Coated MoS2 Basal Planes for Efficient Hydrogen Evolution Reaction. Advanced Functional Materials 2017, 27 (34), 1701825.
    179. Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y.; Adzic, R. R., Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angewandte Chemie 2012, 51 (25), 6131-5.
    180. Lassalle-Kaiser, B.; Merki, D.; Vrubel, H.; Gul, S.; Yachandra, V. K.; Hu, X.; Yano, J., Evidence from in situ X-ray absorption spectroscopy for the involvement of terminal disulfide in the reduction of protons by an amorphous molybdenum sulfide electrocatalyst. Journal of the American Chemical Society 2015, 137 (1), 314-21.
    181. Cesano, F.; Bertarione, S.; Piovano, A.; Agostini, G.; Rahman, M. M.; Groppo, E.; Bonino, F.; Scarano, D.; Lamberti, C.; Bordiga, S.; Montanari, L.; Bonoldi, L.; Millini, R.; Zecchina, A., Model oxide supported MoS2 HDS catalysts: structure and surface properties. Catalysis Science & Technology 2011, 1 (1), 123.
    182. Sun, S.; Zhang, G.; Gauquelin, N.; Chen, N.; Zhou, J.; Yang, S.; Chen, W.; Meng, X.; Geng, D.; Banis, M. N.; Li, R.; Ye, S.; Knights, S.; Botton, G. A.; Sham, T.-K.; Sun, X., Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition. Scientific reports 2013, 3, 1775.
    183. Chen, Y.; Ji, S.; Chen, C.; Peng, Q.; Wang, D.; Li, Y., Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule 2018, 2 (7), 1242-1264.
    184. Yang, X.-F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T., Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Accounts of Chemical Research 2013, 46 (8), 1740-1748.
    185. Yaxin Chen, Z. H., Zhen Ma, Jianmin Chena and Xingfu Tang, Fabrication, characterization, and stability of supported single-atom catalysts. Catalysis Science & Technology 2017 7,4250–4258.
    186. Zhang, Y.; Guo, L.; Tao, L.; Lu, Y.; Wang, S., Defect-Based Single-Atom Electrocatalysts. Small Methods 2018, 1800406.
    187. Zhang, L. Z.; Jia, Y.; Gao, G. P.; Yan, X. C.; Chen, N.; Chen, J.; Soo, M. T.; Wood, B.; Yang, D. J.; Du, A. J.; Yao, X. D., Graphene Defects Trap Atomic Ni Species for Hydrogen and Oxygen Evolution Reactions. Chem 2018, 4, 285-297.
    188. Liu, P. X.; Zheng, N. F., Coordination Chemistry of Atomically Dispersed Catalysts. Natl Sci Rev 2018, 5, 636-638.
    189. Ojovan, M. I.; Lee, W. E., Connectivity and glass transition in disordered oxide systems. Journal of Non-Crystalline Solids 2010, 356 (44-49), 2534-2540.
    190. Xie, W.; Ji, L.-l.; Zhou, J.-l.; Pan, H.-b.; Zhu, J.-f.; Zhang, Y.; Sun, S.; Bao, J.; Gao, C., Effect of Mn Promoter on Structure and Performance of K-Co-Mo Catalyst for Synthesis of Higher Alcohols from CO Hydrogenation. Chin. J.Chem. Phys. 2017, 29 (6), 671.
    191. Brookes, C.; Wells, P. P.; Dimitratos, N.; Jones, W.; Gibson, E. K.; Morgan, D. J.; Cibin, G.; Nicklin, C.; Mora-Fonz, D.; Scanlon, D. O., The nature of the molybdenum surface in iron molybdate. The active phase in selective methanol oxidation. The Journal of Physical Chemistry C 2014, 118 (45), 26155-26161.
    192. Qiao, W.; Yan, S.; Song, X.; Zhang, X.; Sun, Y.; Chen, X.; Zhong, W.; Du, Y., Monolayer MoS2 quantum dots as catalysts for efficient hydrogen evolution. RSC Adv. 2015, 5 (118), 97696-97701.
    193. Gawande, M. B.; Goswami, A.; Asefa, T.; Guo, H.; Biradar, A. V.; Peng, D. L.; Zboril, R.; Varma, R. S., Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chemical Society reviews 2015, 44 (21), 7540-90.
    194. Wang, C.; Tian, B.; Wu, M.; Wang, J., Revelation of the Excellent Intrinsic Activity of MoS2|NiS|MoO3 Nanowires for Hydrogen Evolution Reaction in Alkaline Medium. ACS applied materials & interfaces 2017, 9 (8), 7084-7090.
    195. Chen, X.; McCrum, I. T.; Schwarz, K. A.; Janik, M. J.; Koper, M. T. M., Co-adsorption of Cations as the Cause of the Apparent pH Dependence of Hydrogen Adsorption on a Stepped Platinum Single-Crystal Electrode. Angewandte Chemie 2017, 56 (47), 15025-15029.
    196. Wang, H.; Tsai, C.; Kong, D.; Chan, K.; Abild-Pedersen, F.; Nørskov, J. K.; Cui, Y., Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Research 2015, 8 (2), 566-575.
    197. Shi, Y.; Zhou, Y.; Yang, D.-R.; Xu, W.-X.; Wang, C.; Wang, F.-B.; Xu, J.-J.; Xia, X.-H.; Chen, H.-Y., Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. Journal of the American Chemical Society 2017, 139 (43), 15479-15485.
    198. Li, S.; Chen, T.; Wen, J.; Gui, P.; Fang, G., In situ grown Ni9S8 nanorod/O-MoS2 nanosheet nanocomposite on carbon cloth as a free binder supercapacitor electrode and hydrogen evolution catalyst. Nanotechnology 2017, 28 (44), 445407.
    199. Bae, C.; Ho, T. A.; Kim, H.; Lee, S.; Lim, S.; Kim, M.; Yoo, H.; Montero-Moreno, J. M.; Park, J. H.; Shin, H., Bulk layered heterojunction as an efficient electrocatalyst for hydrogen evolution. Science advances 2017, 3 (3), e1602215.
    200. Wang, F.; Lu, B., Well-aligned MoO2 nanowires arrays: Synthesis and field emission properties. Physica B: Condensed Matter 2009, 404 (14-15), 1901-1904.
    201. Cao, P.; Peng, J.; Liu, S.; Cui, Y.; Hu, Y.; Chen, B.; Li, J.; Zhai, M., Tuning the Composition and Structure of Amorphous Molybdenum Sulfide/Carbon Black Nanocomposites by Radiation Technique for Highly Efficient Hydrogen Evolution. Scientific reports 2017, 7 (1), 16048.
    202. Dong, H.; Liu, C.; Ye, H.; Hu, L.; Fugetsu, B.; Dai, W.; Cao, Y.; Qi, X.; Lu, H.; Zhang, X., Three-dimensional nitrogen-doped graphene supported molybdenum disulfide nanoparticles as an advanced catalyst for hydrogen evolution reaction. Scientific reports 2015, 5, 17542.
    203. Hussain, S.; Lalla, N.; Kuo, Y.-K.; Lakhani, A.; Sathe, V.; Deshpande, U.; Okram, G., Thermoelectric properties of Ag-doped CuS nanocomposites synthesized by a facile polyol method. Physical Chemistry Chemical Physics 2018, 20 (8), 5926-5935.
    204. Sheng, W.; Zhuang, Z.; Gao, M.; Zheng, J.; Chen, J. G.; Yan, Y., Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nature communications 2015, 6, 5848.
    205. Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A., New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7 (7), 2255-2260.
    206. Wang, J. X.; Springer, T. E.; Liu, P.; Shao, M.; Adzic, R. R., Hydrogen oxidation reaction on Pt in acidic media: Adsorption isotherm and activation free energies. The Journal of Physical Chemistry C 2007, 111 (33), 12425-12433.
    207. Bashyam, R.; Zelenay, P., A class of non-precious metal composite catalysts for fuel cells. Nature 2006, 443, 63.
    208. Zhuang, Z.; Giles, S. A.; Zheng, J.; Jenness, G. R.; Caratzoulas, S.; Vlachos, D. G.; Yan, Y., Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte. Nature communications 2016, 7, 10141.
    209. Lu, S.; Zhuang, Z., Investigating the influences of the adsorbed species on catalytic activity for hydrogen oxidation reaction in alkaline electrolyte. Journal of the American Chemical Society 2017, 139 (14), 5156-5163.
    210. Zheng, J.; Zhou, S.; Gu, S.; Xu, B.; Yan, Y., Size-Dependent Hydrogen Oxidation and Evolution Activities on Supported Palladium Nanoparticles in Acid and Base. Journal of The Electrochemical Society 2016, 163 (6), F499-F506.
    211. Zhang, H.; Shen, P. K., Recent development of polymer electrolyte membranes for fuel cells. Chemical reviews 2012, 112 (5), 2780-832.
    212. Machado, B. S.; Chakraborty, N.; Mamlouk, M.; Das, P. K., A Three-Dimensional Agglomerate Model of an Anion Exchange Membrane Fuel Cell. Journal of Electrochemical Energy Conversion and Storage 2018, 15 (1), 011004.
    213. Maillard, F.; Job, N.; Chatenet, M., Approaches to synthesize carbon-supported platinum-based electrocatalysts for proton-exchange membrane fuel cells. New and future developments in catalysis. Batteries, hydrogen storage and fuel cells 2013, 407-428.
    214. McLean, G.; Niet, T.; Prince-Richard, S.; Djilali, N., An assessment of alkaline fuel cell technology. International Journal of Hydrogen Energy 2002, 27 (5), 507-526.
    215. Cong, Y.; Yi, B.; Song, Y., Hydrogen oxidation reaction in alkaline media: From mechanism to recent electrocatalysts. Nano Energy 2017.
    216. Alia, S. M.; Pivovar, B. S.; Yan, Y., Platinum-coated copper nanowires with high activity for hydrogen oxidation reaction in base. Journal of the American Chemical Society 2013, 135 (36), 13473-8.
    217. Wang, Y.; Wang, G.; Li, G.; Huang, B.; Pan, J.; Liu, Q.; Han, J.; Xiao, L.; Lu, J.; Zhuang, L., Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? Energy & Environmental Science 2015, 8 (1), 177-181.
    218. Bhowmik, T.; Kundu, M. K.; Barman, S., Palladium nanoparticle–graphitic carbon nitride porous synergistic catalyst for hydrogen evolution/oxidation reactions over a broad range of pH and correlation of its catalytic activity with measured hydrogen binding energy. Acs Catalysis 2016, 6 (3), 1929-1941.
    219. Zheng, J.; Sheng, W.; Zhuang, Z.; Xu, B.; Yan, Y., Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Science advances 2016, 2 (3), e1501602.
    220. McCrum, I. T.; Janik, M. J., First Principles Simulations of Cyclic Voltammograms on Stepped Pt (553) and Pt (533) Electrode Surfaces. ChemElectroChem 2016, 3 (10), 1609-1617.
    221. Mahoney, E. G.; Sheng, W.; Yan, Y.; Chen, J. G., Platinum-Modified Gold Electrocatalysts for the Hydrogen Oxidation Reaction in Alkaline Electrolytes. ChemElectroChem 2014, 1 (12), 2058-2063.
    222. Funtikov, A.; Stimming, U.; Vogel, R., Anion adsorption from sulfuric acid solutions on Pt (111) single crystal electrodes. Journal of Electroanalytical Chemistry 1997, 428 (1-2), 147-153.
    223. Oliveira, V. L.; Sibert, E.; Soldo-Olivier, Y.; Ticianelli, E. A.; Chatenet, M., Insertion/Disinsertion of Hydrogen in Tailored Pd Layers Deposited on Pt (111) Surface in Alkaline and Acidic Medium. Electrocatalysis 2018, 9 (2), 258-263.
    224. Albery, W. J., Effect of the dissociation of water on electrochemical studiesinvolving hydrogen ions. Trans. Faraday Soc 1966, 62, 1575–1582.
    225. Łosiewicz, B.; Jurczakowski, R.; Lasia, A., Kinetics of hydrogen underpotential deposition at polycrystalline rhodium in acidic solutions. Electrochimica Acta 2011, 56 (16), 5746-5753.

    無法下載圖示 全文公開日期 2024/08/20 (校內網路)
    全文公開日期 2029/08/20 (校外網路)
    全文公開日期 2034/08/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE