簡易檢索 / 詳目顯示

研究生: 羅登郁
Teng-Yu Lo
論文名稱: 毫米波雷達與Ka頻段衛星通訊之陣列天線設計和傳播分析
Array Antenna Design and Propagation Analysis for Millimeter Radars and Ka Band Satellite Communications
指導教授: 楊成發
Chang-Fa Yang
口試委員: 楊成發
陳筱青
林文雄
林健維
陳文士
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 115
中文關鍵詞: 毫米波雷達系統衛星通訊槽孔陣列天線貼片陣列天線圓極化電波傳播
外文關鍵詞: Millimeter Wave, Radar System, Satellite Communications, Slot Array Antenna, Patch Array Antenna, Circular Polarization, Wave Propagation
相關次數: 點閱:390下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文包含三項研究主題,第一部份為應用於室內人數偵測之60GHz槽孔陣列天線,其中為了以最少的雷達數量涵蓋最大的偵測空間,乃需要一款頻寬4GHz且寬波束的60GHz毫米波天線,並搭配德州儀器(TI)公司的60GHz 3T4R雷達模組,以作為3D空間的物體偵測之用。由於室內人數偵測之雷達應用大多採用貼片天線的型式,若要包含四周 的偵測範圍一般需要使用4個雷達模組,並且若雷達模組天線極化方向相同,模組與模組間的電磁干擾會較大,因此本研究提出一款寬波束且極化方向與貼片天線正交的天線設計,期能減少所需雷達模組個數以及降低相互干擾。
第二部分為Ka頻段衛星通訊圓極化陣列天線設計,為了滿足收發機高頻寬與小型化之需求,衛星通訊系統所使用頻段,由傳統的微波頻帶不斷朝著毫米波頻帶演進。操作在Ka頻段的衛星通訊具備相當優勢,除了可獲得足夠帶寬,也能解決既有頻帶壅塞問題。此外,以相同的天線尺寸來考量,其天線的增益也相較Ku頻段天線增益來得高,並且將能建置較輕巧之衛星及地面站。此外,當地面站天線追蹤對準衛星時,為避免兩端收發天線間極化偏移的影響,本研究乃設計圓極化陣列天線。
第三部分為電波傳播通道的分析,其中不管是在雷達偵測或衛星通訊,隨著傳輸頻率的提高,我們所面臨的通道衰減也隨之增加,並且在不同頻段,大氣中主要影響衰減的因素也不盡相同。本研究將針對Ka頻段與60GHz ISM頻段,來探討主要影響衰減的因素與分析衰減量,以在鏈路預算評估上能更貼近真實情況。


This thesis contains three research topics. The first part is a 60GHz slot antenna array used in indoor people detections. To cover the largest detection area with the least number of the radars, an array antenna with a 4GHz bandwidth and wider beam is requested. The 60GHz millimeter wave antenna applied with TI IWR6843 chip, which contains a three-transmitter and four-receiver architecture, can support object detections in three dimensions. Usually, indoor people detection applications use patch antenna arrays, which need four radar modules to include a 360° coverage. Besides, with the same antenna polarization of the modules, mutual interferences among the modules will increase. Therefore, in this study, an antenna array design with a wider beam and orthogonal polarization to the patch antenna array is proposed.
The second part is the circularly polarized antenna array design of the Ka-band satellite communications. In order to meet the wide bandwidth and miniaturization requirements of the transceiver, the frequency band of the antenna for the satellite communication system has been progressed from the traditional microwave to millimeter wave bands. Satellite communications operating in the Ka band have considerable advantages, such as solving the problem of the congestions in the existing frequency bands and obtaining a sufficient bandwidth. In addition, with the same antenna size, the gain of the antenna array is higher than that in the Ku band. Also, due to the higher operating frequency band, it is possible to build lighter and smaller satellites and ground terminals. Besides, to avoid the polarization mismatch between the transmitting and receiving antennas during the ground terminals tracking the satellites, a circularly polarized antenna array is designed in this thesis.
The third part is the analysis of the propagation channel. For the radar detections and satellite communications, the propagation frequencies become higher so that channel attenuation will increase. Also, in different frequency bands, main factors that affect the attenuation in the atmosphere are varied. Thus, this part will analyze the main factors that affect the attenuation and estimate the propagation losses for the Ka and 60GHz ISM bands, so that more accurate predictions for propagation attenuation may be obtained in evaluating link budgets.

摘要 I ABSTRACT I 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 論文組織 4 第二章 毫米波雷達之槽孔陣列天線 5 2.1 前言 5 2.2槽孔天線之設計原理與結構 7 2.2.1槽孔天線設計原理 7 2.3 應用於60GHZ頻段之ITEQ板材分析 11 2.3.1 ITEQ與Rogers 板材比較 11 2.3.2 ITEQ與Rogers 板材量測結果分析 13 2.4 60GHZ槽孔陣列天線設計與結構 17 2.4.1 60GHz槽孔天線單元設計 17 2.4.2 60GHz槽孔天線單元模擬結果 19 2.4.3 60GHz槽孔陣列天線饋入設計 24 2.4.4 60GHz槽孔陣列天線饋入模擬結果 27 2.4.5 60GHz槽孔陣列天線設計 29 2.4.6 60GHz槽孔陣列天線模擬結果 32 2.5 雷達系統之饋入架構與天線設計 40 2.5.1同軸連接架構 40 2.6 應用於TI IWR6843晶片之雷達天線設計 44 2.6.1 雷達天線擺放方式與雷達天線設計 44 2.6.2 3T4R槽孔陣列天線雷達模擬結果 46 2.6.3 3T4R槽孔陣列天線雷達量測結果 56 2.7 小結 64 第三章 KA頻段圓極化陣列天線設計 65 3.1 前言 65 3.2 KA頻段圓極化天線設計之原理與架構 66 3.2.1 Ka頻段圓極化天線樣式 66 3.2.2 Ka頻段圓極化天線板材選擇 69 3.2.3 Ka頻段圓極化天線單元設計 70 3.2.4 Ka頻段圓極化天線單元模擬結果 72 3.3 KA頻段圓極化陣列天線架構設計 75 3.3.1 Ka頻段圓極化陣列天線模擬結果 77 3.4 KA頻段低損耗連接同軸電纜跳線與板材走線比較 81 3.5 小結與未來工作 82 第四章 KA與60 GHZ ISM頻段傳播分析 85 4.1 前言 85 4.2 ITU-R雨衰模型 86 4.3 ITU-R雲霧衰減模型 88 4.4 ITU-R氧氣衰減模型 89 4.5 即時60GHZ雷達與KA頻段衛星通訊傳播通道分析 92 4.6小結 94 第五章 結論 95 參考文獻 96

[1] Starlink低軌道衛星系統, https://www.quora.com/How-does-Elon-Musks-Starlink-work-Will-I-be-able-to-have-service-and-wifi-anywhere
[2] Texas Instrument, Choosing 60-GHz mmWave Sensors over 24-GHz to Enable Smarter Industrial Applications, Jan. 2018.
[3] J. T. Sri-Sumantyo, “Development of circularly polarized synthetic aperture radar (CP-SAR) onboard small satellite,” in Proc. PIERS, Marrakesh, Morocco, 2011, pp. 334–341.
[4] D.M. Pozar, Microwave Engineering, 4rd edition, John Wiley & Sons, Nov. 2011.
[5] WAI-KAI CHEN, The Electrical Engineering Handbook, 1st edition, Academic Press, Nov. 2004
[6] Warren L. Stutzman and Gary A. Thiele, Antenna Theory and Design, Wiley, 2012
[7] Zhi Ning Chen, Duixian Liu, Hisamatsu Nakano, Xianming Qing, Thomas Zwick, Handbook of Antenna Technologies, 1st edition, Springer Nature, 2016
[8] 邱亦文,「毫米波雷達陣列天線與無線收發模組八木天線之設計」,國立臺灣科技大學,中華民國109年7月。
[9] Texas Instrument, MIMO Radar Application Report, Jul. 2018.
[10] Texas Instrument, The fundamentals of millimeter wave sensors, July. 2020.
[11] Louis J. Ippolito Jr., Satellite Communications Systems Engineering: Atmospheric Effects, Satellite Link Design and System Performance, Wiley, 394pp, 2008
[12] Warren L. Stutzman and Gary A. Thiele, Antenna Theory and Design, Wiley, 843p, 2012
[13] ITU-R, Rec. P. 838-3 “Specific attenuation model for rain for use in prediction methods”, Geneva 2005
[14] 李佳哲,「高速光電連接器與毫米波雷達天線及饋入架構之設計」,國立臺灣科技大學,中華民國109年7月。
[15] H. Al-Saedi, W. M. Abdel-Wahab, S. Gigoyan, R. Mittra and S. Safavi-Naeini, “Ka-Band Antenna With High Circular Polarization Purity and Wide AR Beamwidth,” IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 9, pp. 1697-1701, Sept. 2018, doi: 10.1109/LAWP.2018.2864172.
[16] J. Wu, Y. J. Cheng and Y. Fan, “Millimeter-Wave Wideband High-Efficiency Circularly Polarized Planar Array Antenna,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 2, pp. 535-542, Feb. 2016, doi: 10.1109/TAP.2015.2506726.
[17] Nasimuddin, Xianming Qing and ZhiNing Chen, “A wideband circularly polarized microstrip array antenna at Ka-band,” 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, 2016, pp. 1-4, doi: 10.1109/EuCAP.2016.7481214.
[18] J. D. Díaz et al., “A Cross-Stacked Radiating Antenna With Enhanced Scanning Performance for Digital Beamforming Multifunction Phased-Array Radars,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 10, pp. 5258-5267, Oct. 2018, doi: 10.1109/TAP.2018.2862252.
[19] H. Al-Saedi et al., “An Integrated Circularly Polarized Transmitter Active Phased-Array Antenna for Emerging Ka-Band Satellite Mobile Terminals,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 8, pp. 5344-5352, Aug. 2019, doi: 10.1109/TAP.2019.2913745.
[20] A. H. Aljuhani, T. Kanar, S. Zihir and G. M. Rebeiz, “A Scalable Dual-Polarized 256-Element Ku-Band Phased-Array SATCOM Receiver with ±70° Beam Scanning,” 2018 IEEE/MTT-S International Microwave Symposium - IMS, Philadelphia, PA, 2018, pp. 1203-1206, doi: 10.1109/MWSYM.2018.8439257.
[21] Anokiwave_AWMF_0132,
https://www.anokiwave.com/products/awmf-0132/index.html
[22] Anokiwave_AWMF_0133,
https://www.anokiwave.com/products/awmf-0133/index.html
[23] B. Arbesser-Rastburg, "Propagation effects on Satellite Communications and navigation systems," 2016 22nd International Conference on Applied Electromagnetics and Communications (ICECOM), Dubrovnik, 2016, pp. 1-4, doi: 10.1109/ICECom.2016.7843872.
[24] L. Luini, "A Comprehensive Methodology to Assess Tropospheric Fade Affecting Earth–Space Communication Systems," in IEEE Transactions on Antennas and Propagation, vol. 65, no. 7, pp. 3654-3663, July 2017.
[25] ITU-R Recommendation P.676-12 (08/2019) Attenuation by atmospheric gases and related effects
[26] ITU-R Recommendation P.840-3 (10/99) Attenuation due to clouds and fog
[27] ITU-R Recommendation P.676-10 (09/2013) Attenuation by atmospheric gases
[28] ITU-R Recommendation P.838-3 (03/2005) Specific attenuation model for rain for use in prediction methods
[29] 中央氣象局所提供之資料, http://e-service.cwb.gov.tw/HistoryDataQuery/
[30] 一百一十年六月四日下午三點台北降下豪大雨並造成市區淹水, https://tw.appledaily.com/life/20210604/YKBKR2H3YRGFRD3MZNOK7AQU3U/

無法下載圖示 全文公開日期 2024/08/09 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE