簡易檢索 / 詳目顯示

研究生: 蔡宗志
Zong-Zhi Tsai
論文名稱: 以數位信號處理器為基礎之太陽能與風力複合發電系統之研製
Development of DSP-Based Solar and Wind Hybrid Power Conversion Systems
指導教授: 黃仲欽
Jonq-Chin, Hwang
葉勝年
Sheng-Nian, Yeh
口試委員: 張松助
none
呂文隆
none
林法正
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 109
中文關鍵詞: 市電並聯太陽能發電風力發電獨立供電
外文關鍵詞: solar power, stand-alone, grid-connected, wind power
相關次數: 點閱:360下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文旨在設計及製作太陽能與風力混合型發電系統。本系統以直流/直流升壓型功率轉換器,搭配擾動觀察法作為最大功率追蹤控制器,使太陽能電池與風力發電機於當時大氣環境下輸出最大功率,有效利用再生能源。另外,文中亦提出直流升/降壓式截波器作為蓄電池儲、釋能控制,完成系統能量平衡管理,提高供電可靠度。最後,本發電系統採用三相三階層變流器作為直流/交流轉換之用,一方面利用三階層架構減少輸出電壓之諧波含量,另一方面將再生能源輸出之直流電轉變成交流電,供給三相負載獨立使用或傳輸至電力網路,達到分散式供電系統之功能。
本文之系統利用MATLAB/Simulink模擬軟體進行分析,作為系統控制器設計之依據,並以高性能、低成本的數位信號處理器(DSP, TMS320LF2407A)為整體系統之控制核心,其控制策略皆由軟體程式完成,不但減少硬體電路成本,並增加系統運作可靠度。本系統已完成520W的獨立供電系統及市電並聯系統。在獨立運轉下,其額定輸出線電壓有效值為220V,頻率為60Hz。在並聯運轉下,可提供實功率及虛功率至電力網路。此外,整體系統之運轉效率為83%,而三相三階層變流器輸出線電壓之總諧波失真率為2.7%,符合IEEE Std. 519之規範。實驗結果驗證本文之理論分析及控制法則的可行性。


This thesis presents the design and implementation of a solar and wind power hybrid generating system. The system adopts the dc/dc boost power converter as well as perturb-and-observe algorithm for the maximum power point tracking of the hybrid system to achieve all-time optimum power output and realize the effective use of renewable energy. In addition, a dc boost/buck chopper is designed to charge or discharge batteries in order to regulate the power flow between solar cells, wind turbine and system loads so that it can accomplish the management of energy balance control and enhance the reliability of the whole system. Finally, a three-phase, three-level inverter is proposed to reduce the output voltage harmonics. The system realized can be operated either in a stand-alone fashion or connected with power grid.
In this thesis, the mathematical models and controller designs are built and simulated by MATLAB/Simulink. Then, a high-performance, low-cost digital signal processor (DSP, TMS320LF2407A) is used to control the system for reducing the circuit complexity. A prototype of 520W hybrid power conversion system is developed under stand-alone and grid-connected operation, separately. The system can feed proper power to the grid in grid-connected operation, while for stand-alone operation, the rated line-voltage is 220V and the frequency is 60Hz. Besides, the experimental data show that the efficiency of the whole system reaches 83% and voltage harmonic distortion of three-phase, three-level power inverter output is 2.7%, which complies with IEEE Std. 519. Finally, simulation and experimental results are given to justify the analysis.

中文摘要 Ⅰ 英文摘要 Ⅱ 誌 謝 Ⅲ 目 錄 Ⅳ 圖表索引 Ⅶ 符號索引 XII 第一章 緒論 1 1.1 研究動機 1 1.2 系統架構 2 1.3 本文大綱 3 第二章 太陽能與風力發電系統 5 2.1 前言 5 2.2 太陽能電池簡介 5 2.3 太陽能發電系統架構及控制 12 2.3.1 太陽能發電系統之最大功率追蹤控制 12 2.3.2 直流/直流升壓型功率轉換器之數學模式 13 2.4 風力發電的原理 15 2.5 風力發電系統架構及控制 18 2.5.1 永磁式同步發電機之數學模式 19 2.5.2 風力發電系統之最大功率追蹤控制 22 2.6 結語 24 第三章 三相三階層直流/交流功率轉換器之分析及控制 25 3.1 前言 25 3.2 三相三階層直流/交流功率轉換器之分析 25 3.3 三相三階層直流/交流功率轉換器之控制 29 3.3.1 同步旋轉座標系統 29 3.3.2 功率轉換器之控制法則與調節器設計 32 3.3.3 三階層功率轉換器中性點電位對稱之控制 36 3.3.4 三階層功率轉換器之開關控制訊號 37 3.4 結語 38 第四章 複合系統之能量管理 40 4.1 前言 40 4.2 蓄電池充放電系統架構及控制 40 4.2.1 直流截波器升壓模式 41 4.2.2 直流截波器降壓模式 42 4.3 能量管理模式 44 4.3.1 獨立供電系統 45 4.3.2 市電並聯系統 48 4.4 結語 52 第五章 實作與測試 53 5.1 前言 53 5.2 硬體電路 53 5.2.1 數位信號處理器之介面電路 54 5.2.2 電壓回授電路 55 5.2.3 電流回授電路 56 5.2.4 功率電晶體驅動電路 56 5.2.5 同步偵測電路 57 5.3 軟體規劃 57 5.3.1 主程式規劃 57 5.3.2 太陽能發電系統程式規劃 59 5.3.3 風力發電系統程式規劃 60 5.3.4 蓄電池充放電系統程式規劃 61 5.3.5 三相變流器獨立供電程式規劃 62 5.3.6 三相變流器並聯供電程式規劃 64 5.4 實測結果 65 5.5 結語 86 第六章 結論與建議 87 6.1 結論 87 6.2 建議 88 參考文獻 89 附 錄 A 系統規格與電路參數 93 附 錄 B 永磁式同步發電機之額定 94 作者簡介 95

[1] M. H. Nehrir, B. J. LaMeres, G. Venkataramanan, V. Gerez and L. Alvarado, “An Approach to Evaluate The General Performance of Stand-Alone Wind/Photovoltaic Generating Systems,” IEEE Transactions on Energy Conversion, vol. 15, pp. 433-439, 2000.
[2] F. Valenciaga, P. F. Puleston and P. E. Battaiotto, “Power Control of a Solar/Wind Generation System Without Wind Measurement: A Passivity/Sliding Mode Approach,” IEEE Transactions on Energy Conversion, vol. 18, no. 4, pp. 501-507, 2003.
[3] A. Nabae, I. Takahashi and H. Akagi, “A New Neutral-Point-Clamped PWM Inverter,” IEEE Transactions on Industry Applications, vol. 17, pp. 518-523, 1981.
[4] B. R. Lin and T. C. Wei, “A Novel NPC Inverter for Harmonics Elimination and Reactive Power Compensation,” IEEE Transactions on Power Delivery, vol. 19, no. 2, pp. 1449-1456, 2004.
[5] R. W. De Doncker and J. P. Lyons, “The Auxiliary Resonant Commutated Pole Converter,” IEEE-IAS Conference Record, vol. 2, pp. 1228-1235, 1990.
[6] W. Dong, J. Y. Choi, F. C. Lee, D. Boroyevich and J. Lai, “Comprehensive Evaluation of Auxiliary Resonant Commutated Pole Inverter for Electric Vehicle Applications,” IEEE-PESC Conference Record, vol. 2, pp. 625-630, 2001.
[7] 莊嘉琛,“太陽能工程-太陽能電池篇”,全華出版社,1997。
[8] 吳財福、張健軒、陳裕愷,“太陽能供電與照明系統綜論”,全華出版社,2000。
[9] 王耀諄、邱國偉,“太陽能電池EMTP模型之建立”,電力電子技術雙月刊第65期,2001。
[10] C. Hua, J. Lin and C. Shen, “Implementation of A DSP-Controlled Photovoltaic System with Peak Power Tracking,” IEEE Transaction on Industrial Electronics, vol. 45, no. 1, pp. 99-107, 1998.
[11] C. C. Hua and C. M. Shen, “Study of Maximum Power Tracking Techniques and Control of DC/DC Converters for Photovoltaic Power System,” IEEE-PESC Conference Record, vol. 1, pp. 86-93, 1998.
[12] X. Liu and L. A. C. Lopes, “An Improved Perturbation and Observation Maximum Power Point Tracking Algorithm for PV Arrays,” IEEE-PESC Conference Record, vol. 3, pp. 2005-2010, 2004.
[13] T. G. Habetler, “A Space Vector-Based Rectifier Regulator for AC/DC/AC Converters,” IEEE Transactions on Power Electronics, vol. 8, no. 1, pp. 30-36, 1993.
[14] 呂威賢,“再生能源專題報導-風的故事”,科學發展月刊第383期,2004。
[15] 曹培熙,“大學物理學”,曉園出版社,1989。
[16] J. F. Walker, “Wind Energy Technology,” John Wiley & Sons Inc., 1997.
[17] 林聖賢,“市電併聯型太陽能與風能發電系統研製”,國立中正大學電機工程研究所碩士論文,民國九十二年。
[18] C. L. Kana, M. Thamodharan and A. Wolf, “System Management of A Wind-Energy Converter,” IEEE Transactions on Power Electronics, vol. 16, no. 3, pp. 375-381, 2001.
[19] Z. Chen and E. Spooner, “Grid Power Quality with Variable Speed Wind Turbines,” IEEE Transactions on Energy Conversion, vol. 16, no. 2, pp. 148-154, 2001.
[20] A Website for Discussions on Wind Turbine Basic Theory, Mathematical Analysis, Wind Tunnel Testing, and Test Model Building with Emphasize on Darrieus Rotor. (http://windturbine-analysis.com)
[21] Matlab 7.0 (C:MATLAB701/toolbox/physmod/powersys/DRdemo/
power_wind_ig)
[22] 林榮輝,“太陽能與風力發電之直流-直流功率轉換器並聯系統之研製”,國立台灣科技大學電機工程研究所碩士論文,民國九十三年。
[23] 顏誌賢,“永磁式同步發電機功率控制系統之研製”,國立台灣科技大學電機工程研究所碩士論文,民國八十九年。
[24] A. B. Raju, K. Chatterjee and B. G. Fernandes, “A Simple Maximum Power Point Tracker for Grid Connceted Variable Speed Wind Energy Conversion System with Reduced Switch Count Power Converter,” IEEE-PESC Conference Record, vol. 2, pp. 748-753, 2003.
[25] K. Tan and S. Islam, “Optimum Control Strategies In Energy Conversion of PMSG Wind Turbine System without Mechanical Sensors,” IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp. 392-399, 2004.
[26] S. H. Song, S. I. Kang and N. K. Hahm, “Implementation and Control of Grid Connected AC-DC-AC Power Converter for Variable Speed Wind Energy Conversion System,” IEEE-APEC Conference Record, vol. 1, pp. 154-158, 2003.
[27] 李惇榮,“三相三階層雙向功率轉換器之研製”,國立台灣科技大學電機工程研究所碩士論文,民國九十三年。
[28] C. M. Ong, “Dynamic Simulation of Electric Machinery: Using Matlab/Simulink,” Prentice Hall PTR, 1998.
[29] P. C. Krause, “Analysis of Electric Machinery,” McGraw-Hill, New York, 1987.
[30] 張鴻鈞,“不平衡負載之三相不斷電系統研製”, 國立台灣科技大學電機工程研究所碩士論文,民國九十一年。
[31] 曾兆利,“以數位信號處理器為基礎之永磁式同發電機功率控制系統之研製”,國立台灣科技大學電機工程研究所碩士論文,民國九十年。
[32] G. Carrara, S. Gardella, M. Marchesoni, R. Salutari and G. Sciutto, “A New Multilevel PWM Method: A Theoretical Analysis,” IEEE Transactions on Power Electronics, vol. 7, pp. 497-505, 1992.
[33] 呂文隆,“蓄電池儲能系統之設計與製作”, 國立台灣工業技術學院工程技術研究所電機工程技術學程碩士論文,民國八十一年。
[34] J. H. R. Enslin and D. B. Snyman, “Combined Low-Cost, High-Efficient, Inverter, Peak Power Tracker and Regulator for PV Applications,” IEEE Transactions on Power Electronics, vol. 6, no. 1, pp. 73-82, 1991.
[35] M. S. Taha and K. Suresh, “Maximum Power Point Tracking Inverter for Photovoltaic Source Pumping Applications,” Proceeding of International Conference on Power Electronics, Drives and Energy System for Industrial Growth, vol. 2, pp.883-886, 1996.
[36] K. Harada and G. Zhao, “Controlled Power Interface Between Solar Cell and AC Source,” IEEE Transactions on Power Electronics, vol. 8, no. 4, pp. 654-662, 1993.
[37] U. Herrmann, H. G. Langer and H. van der Broeck, “Low Cost DC to AC Converter for Photovoltaic Power Conversion in Residential Applications,” IEEE-PESC Conference Record, pp. 588-594, 1993.
[38] S. S. Babu and S. Palanichamy, “PC Based Controller for Utility Interconnected Photovoltaic Power Conversion Systems,” Proceeding of International Conference on Power Electronics, Drives and Energy System for Industrial Growth, vol. 1, pp.101-106, 1996.
[39] G. Saccomando and J. Svensson, “Transient Operation of Grid-Connected Voltage Source Converter under Unbalanced Voltage Conditions,” IEEE-IAC Conference Record, vol. 4, pp. 2419-2424, 2001.
[40] A. E. Haniotis, K. S. Soutis, A. G. Kladas and J. A. Tegopouls, “Grid Connected Variable Speed Wind Turbine Modeling, Dynamic Performance and Control,” IEEE-PES Conference Record, vol. 2, pp. 759-764, 2004.

QR CODE