簡易檢索 / 詳目顯示

研究生: 吳佳憲
Chia-Hsien Wu
論文名稱: 應用具有姿態分類的增量式比例微分控制於人形機器人之自主動態平衡
Active Dynamic Balance of Humanoid Robot Using Pose Classification with Incremental Proportional Derivative Dead-Zone Control
指導教授: 黃志良
Chih-Lyang Hwang
口試委員: 施慶隆
Ching-Long Shih
郭重顯
Chung-Hsien Kuo
翁慶昌
Ching-Chang Wong
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 92
中文關鍵詞: 自主動態平衡人形機器人的連續步行低通濾波卡爾曼濾波增量式比例微分死區控制
外文關鍵詞: Active dynamic balance, Continuous walking motion of humanoid robot, Low-pass filtering, Kalman filtering, Pose classification with incremental proportiona
相關次數: 點閱:319下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本論文設計一個包含慣性感測器、低通及卡爾曼濾波的動態感測系統,並將感測器模組裝設於人形機器人的重心位置,在機器人執行任務時,獲取其pitch軸與roll軸的角度響應。將相關步行周期訊號重疊,進行其角度響應的分析,以利於萃取機器人在穩定地執行任務時的角度軌跡,作為平衡系統的理想參考角度。為了讓機器人在承受外力干擾時,有效地修正與補償,設計一個具有姿態分類的增量式比例微分死區控制器。第一步先以機器人各具有四個自由度的雙手及六個自由度的雙腳的運動學,推導馬達與各端點之關係,以獲得雙手與雙腳四個端點分別相對於頸部及腰部中心的三維座標,再以此四端點的三維座標分類36種姿態。第二步則以增量式比例微分死區控制器計算pitch軸與roll軸的角度修正量,並且根據不同的姿態分類結果,由適當的馬達進行補償,以達到動態平衡的目的。最後,藉由人形機器人連續步行動作中,施加外力,或改變控制器參數,或不同的行走周期的相關實驗,驗證本論文提出方法之有效性及強健性。


  At the beginning, a dynamic sensing system including the hardware and the low-pass and Kalman filtering is designed. It is then installed at the central of gravity (CoG) of the humanoid robot (HR) and can capture the responses of the pitch and roll axes during the execution of specific task (e.g., continuous motion of walking). After the analytic design, a set of desired pitch and roll trajectories for the stable response of a specific task is achieved. To effectively deal with the external disturbances (e.g., punched by a human from different directions and at different time), the pose classification with incremental proportion-derivative dead-zone control (PCIPDZC) for the HR executing a specific task is developed. Firstly, the 3D coordinates of four tips (i.e., two hands and feet) with respect to the neck and waist centers of HR are computed by the kinematics of 4-DoFs of two arms and 6-DoFs of two legs. Based on these 3D coordinate, the total 36 classes are achieved. Secondly, the incremental proportion-derivative dead-zone control (IPDZC) of the pitch and roll directions for each class with different suitable motors is designed without the requirement of the pressure sensors in the bottom of two feet. Finally, the experiments of continuous walking motion with external disturbances or different control parameters or different walking motions validate the effectiveness and robustness of the proposed method.

目錄 中文摘要 英文摘要 目錄 圖目錄 表目錄 第一章 緒論 第二章 實驗架構 2.1 系統架構 2.1.1 小型人形機器人 2.1.2 感測器 2.2 連續步行動作分析 2.3問題陳述 第三章 動態感測系統 3.1 加速度計訊號量測 3.2 陀螺儀訊號量測 3.3 低通濾波器 3.4 卡爾曼濾波器 3.5 量測訊號之比較 第四章 自主動態平衡控制 4.1 雙手腳之運動學 4.2 姿態分類 4.3 分析動作的參考角度 4.4自主動態平衡策略 第五章 實驗結果與討論 5.1 雙手下垂的連續步行動作 5.1.1 無外力干擾 5.1.2具有外力干擾 5.1.3不同的控制器參數設定 5.2 雙手前舉的連續步行動作 5.2.1無外力干擾 5.2.2具有外力干擾 5.2.3不同的控制器參數設定 5.3 雙手下垂的加速連續步行動作 5.3.1 無外力干擾 5.3.2具有外力干擾 5.3.3不同的控制器參數設定 5.4 更快的連續步行動作 第六章 結論 參考文獻

[1] Q. Huang and Y. Nakamura, “Sensory reflex control for humanoid walking,” IEEE Trans. Robotics, vol. 21, no. 5, pp. 977-984, Oct. 2005.
[2] Y. Guan, E. S. Neo, K. Yokoi and K. Tanie, “Stepping over obstacles with humanoid robots,” IEEE Trans. Robotics, vol. 22, no. 5, pp. 958-973, Oct. 2006.
[3] K. Harada, S. Kajita, F. Kanehiro, K. Fujiwara, K. Kaneko, K. Yokoi and H. Hirukawa,“Real-time planning of humanoid robot’s gait for force- controlled manipulation,” IEEE/ASME Trans. Mechatron., vol. 12, no. 1, pp. 53-62, Feb., 2007.
[4] E. S. Neo, K. Yokoi, S. Kajita and K. Tanie, “Whole-body motion generation integrating operator’s intention and robot’s autonomy in controlling humanoid robots,” IEEE Trans. Robotics, vol. 23, no. 4, pp.763-775, Aug. 2007.
[5] S. H. Hyon, J. G. Hale and G. Cheng, “Full-body compliant human–humanoid interaction: balancing in the presence of unknown external forces,” IEEE Trans. Robotics, vol. 23, no. 5, pp.884-898, Oct. 2007.
[6] C. Fu and K. Chen, “Gait synthesis and sensory control of stair climbing for a humanoid robot,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2111-2120, May 2008.
[7] C. Chevallereau, J. W. Grizzle and C. L. Shih, “Asymptotically stable walking of a five-link underactuated 3-D bipedal robot,” IEEE Trans. Robotics, vol. 25, no. 1, pp. 37-50, Feb. 2009.
[8] O. Stasse, B. Verrelst, B. Vanderborght and K. Yokoi, “Strategies for humanoid robots to dynamically walk over large obstacles,” IEEE Trans. Robotics, vol. 25, no. 4, pp. 960-967, Aug. 2009.
[9] M. Vukobratovi and B. Borovac, “Zero-moment point — Thirty five years of its life,” International Journal of Humanoid Robotics, vol. 1, no. 1, pp. 157–173, 2004.
[10] P. Sardain and G. Bessonne, “Acting on a biped robot center of pressure—Zero moment point,” IEEE Trans. Syst. Man & Cybern., A, vol. 34, no. 5, pp. 630-637, Sep. 2004.
[11] P. Sardain and G. Bessonnet, “Zero moment point—measurements from a human walker wearing robot feet as shoes,” IEEE Trans. Syst. Man & Cybern., A, vol. 34, no. 5, pp. 638-648, Sep. 2004.
[12] K. Harada, S. Kajita, K. Kaneko and H. Hirukawa, “Dynamics and balance of a humanoid robot during manipulation tasks,” IEEE Trans. Robotics, vol. 22, no. 3, pp. 568-575, Jun. 2007.
[14] J. Or, “A hybrid CPG–ZMP controller for the real- time balance of a simulated flexible spine humanoid robot,” IEEE Trans. Syst. Man & Cybern., C, vol. 39, no. 5, pp. 547-561, Sep. 2009.
[15] A. H. Vette, K. Masani and M. R. Popovic, “Implementation of a physiologically identified PD feedback controller for regulating the active ankle torque during quiet stance,” IEEE Trans. Neural Sys. Rehabil. Eng., vol. 15, no. 2, pp. 235-243, Jun. 2007.
[16] T. H. S. Li, Y. T. Su, S. H. Liu, J. J. Hu and C. C. Chen, “Dynamic balance control for biped robot walking using sensor fusion, Kalman filter, and fuzzy logic,” IEEE Trans. Ind. Electron., vol. 59, no. 11 , pp. 4394-4404, No. 2012.
[17] C. L. Hwang, H. C. Wu and M. L. Lin, “The stepping over an obstacle for a humanoid robot with the consideration of dynamic balance”, IEEE SCIE, Taipei Taiwan, pp. 2260-2268, August 18-21 2010.
[18] S. H. Hyon, “Compliant terrain adaptation for biped humanoids without measuring ground surface and contact forces,” IEEE Trans. Robotics, vol. 25, no. 1, pp. 171-178, Feb. 2009.
[19] J. K. Lee and E. J. Park, “Minimum-order Kalman filter with vector selector for accurate estimation of human body orientation,” IEEE Trans. Robotics, vol. 25, no. 5, pp. 1196-1201, Oct. 2009.
[20] S. P. Won, W. W. Melek and F. Golnaraghi, “A Kalman/particle filter-based position and orientation estimation method using a position sensor/inertial measurement unit hybrid system,” IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 1787-1798, May 2010.
[21] W. Suleiman, F. Kanehiro, E. Yoshida, J. P. Laumondand and A. Monin, “Time parameterization of humanoid-robot paths,” IEEE Trans. Robotics, vol. 26, no. 3, pp. 458-468, Jun. 2010.
[22] K. Erbatur and O. Kurt, “Natural ZMP trajectories for biped robot reference generation,” IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 835-845, Mar. 2009.
[23] J. P. Ferreira, M. M. Crisóstomo and A. P. Coimbra, “Adaptive PD controller modeled via support vector regression for a biped robot,” IEEE Trans. Contr. Syst. Technol., vol. 21, no. 3, pp. 941-949, May 2013.
[24] C. L. Hwang, “Microprocessor-based fuzzy decentralized control of two- dimensional piezo- driven systems,” IEEE Trans. Ind. Electronics, vol. 55, no. 3, pp. 1411-1420, Mar. 2008.
[25] R. Manseur, Robot Modeling and Kinematics, Career & Professional Group, Tomson Learning Inc. 2006.

QR CODE