Basic Search / Detailed Display

Author: 蘇綵華
Tsai-hwa Su
Thesis Title: 集群分析於汽車租賃業實務應用之研究
A Study on the Practical Application of Cluster Analysis to a Car Leasing Firm
Advisor: 黃世禎
Shih-chen Huang
Committee: 盧希鵬
Hsi-peng Lu
李國光
Gwo-guang Lee
黃世禎
Shih-chen Huang
Degree: 碩士
Master
Department: 管理學院 - 管理研究所
Graduate Institute of Management
Thesis Publication Year: 2013
Graduation Academic Year: 101
Language: 中文
Pages: 68
Keywords (in Chinese): 汽車租賃業顧客關係管理資料庫行銷資料探勘集群分析
Keywords (in other languages): Car leasing, Customer Relationship Magement, Database Marketing, Data Mining, Cluster Analysis
Reference times: Clicks: 251Downloads: 3
Share:
School Collection Retrieve National Library Collection Retrieve Error Report
  • 長期租賃車業者之市場開發,業者為透過汽車產品進行金融服務,著重於服務內容,多透過汽車經銷商業務代表或由業者自己旗下業務人員來開發企業客戶,因此整個行銷過程,如何滿足顧客的需求進而創造出產品服務的附加價值,為汽車租賃業永續經營及獲利之決勝關鍵。而在行銷過程中資源的配置為企業的一大問題,如何透過有效的資源配置及提升顧客滿意度與顧客忠誠度更是所有企業追求的目標。
    長期租賃車業者在顧客承租車輛的過程中,可同步獲得顧客資料與交易紀錄,透過資料適當地處理、轉換及分析,可了解不同的顧客不同的特性,對於競爭激烈的汽車租賃業者提供適切的行銷資源。本研究將運用資料探勘中的群集化技術,對長期汽車租賃公司顧客進行分群與價值探討,分為三個步驟來進行:
    第一步驟為依據RFM理論,對每一顧客進行評分,並計算每位顧客的MLE(Maximum Likelihood Estimation)、WMLE(Weighted Maximum Likelihood Estimation)等資料,藉此可瞭解每位顧客的活躍趨勢。第二步驟為將RFM、MLE及WMLE等資料,利用資料探勘的群集技術產生四組不同價值的顧客群。第三步驟則是利用分群的結果,依顧客屬性調整為為重量級、中量級、潛等級及被動級顧客,再針對各群顧客的特性探討,擬訂不同顧客群的行銷策略。
    透過本研究不僅能瞭解顧客的屬性,同時期望能對長期汽車租賃車業區隔出不同價值的顧客群特性及偏好,透過客製化行銷來吸引保留顧客,與顧客建立長期的良好關係,同時並可精確地運用企業有限的人力、成本、時間等資源在行銷策略的制定與執行,以降低企業成本及增進營業利潤。


    In the development of long-term car leasing marketing, the industry focuses on contents of services by providing financial services through automobile products. To develop corporation, customers are conducted mostly through the salesman of car dealers or car leasing companies. For the entire marketing process, the issue that how to satisfy the customer needs and thus create value added products and services is the successful key of both sustainability and profitability of the car leasing industry. The allocation of resources is a big problem for enterprises in the marketing process of car leasing industry. Allocating the resources effectively and making customer satisfied and loyal is a goal pursued by all enterprises.
    From the process of leasing vehicles, a long-term car leasing company can access customer information and transaction records synchronously. By properly handling and analysing the data, a leasing company can understand different customers’ different characteristics and can provide appropriate marketing resources in the competitive car leasing industry. In order to investigate the customers and the value of clustering, this study is divided into three steps by using the cluster analysis of data mining.
    The first step is based on RFM (Recency, Frequency and Monetary) theory by rating and calculating each customer's MLE (Maximum Likelihood Estimation) and WMLE (Weighted Maximum Likelihood Estimation) information to understand each customer's active trend. The second step is to use clustering technology of data mining to differentiate customers into four value groups by using their RFM, MLE and WMLE data. The third step is using the results of clustering, in accordance with customers’ attribute and adjusting them into the heavyweight-class, midweight-class, latent level and passive-class. Using each group of customer characteristics can help develop a specific marketing strategy.
    Through this study, not only do we understand the customer's property, but also expect the long-term car leasing industry can distinguish the different value of different customer groups and to retain customers and to build established long-term adverse good relationships with the customers with customized marketing. At the same time, the case company can focus on target customers accurately with limited manpower, cost, time and other resources to develop and implement marketing strategies and to reduce costs and improve operating profit accordingly.

    摘要 II Abstract III 誌謝 IV 目錄 5 表目錄 7 圖目錄 8 第一章、緒論 9 1.1. 研究背景與動機 9 1.2. 研究目的 9 1.3. 研究範圍與流程 10 第二章、文獻探討 12 2.1. 顧客關係管理 12 2.1.1顧客關係管理與行銷概念 12 2.1.2顧客關係管理定義 13 2.1.3顧客關係管理基本架構 15 2.1.4顧客關係管理指標 17 2.2. 資料庫行銷 19 2.2.1資料庫行銷的定義 19 2.2.2完整的資料庫行銷 20 2.2.3資料庫行銷相關研究 21 2.3. 資料庫分析 23 2.3.1 RFM分析模型 23 2.3.2 顧客價值趨勢分析 24 2.4. 資料探勘 25 2.4.1 資料探勘的定義 25 2.4.2 資料探勘的功能 26 2.4.3 資料探勘的流程 28 2.4.4 資料探勘的技術 28 第三章、研究方法 31 3.1.研究方法 31 3.2.研究架構 31 第四章、個案公司資料蒐集與分析 34 4.1.汽車租賃業及市場簡介 34 4.2.個案公司介紹 39 4.3.資料蒐集處理 41 4.3.1 資料蒐集 41 4.3.2 資料處理轉換 42 4.4.資料分析 43 4.4.1 資料庫建立與分析 43 4.4.2 集群資料分析 46 4.4.3 顧客分級 47 4.4.4 顧客分級特性 49 第五章、研究發現與策略討論 56 5.1. 研究發現 56 5.2. 行銷策略 58 第六章、研究結論 63 6.1. 結論與研究貢獻 63 6.2. 研究限制與未來研究方向 63 參考文獻 65 中文部分 65 英文部分 66

    中文部分
    王漢章(2008),台灣汽車租賃業經營策略之研究-以某個案公司為例,國立成功大學/高階管理碩士在職專班碩士論文。
    江展魁(2006),顧客貢獻度和顧客屬性、業代專業性關係之研究-以某汽車公司為例,天主教輔仁大學/管理研究所碩士在職專班碩士論文。
    呂玉娟(1999),客戶資料倉儲-企業維繫顧客關係的「智慧腦」,能力雜志,524期,頁38-40+42+44。
    肖東軍(2005),CRM方法:用RFM分析模型保持有价值客户。
    張月鳳(2001),策略性資料庫行銷應用於信用卡市場之實證研究,國立台灣大學/國際企業學研究所碩士論文。
    連惟謙(2003),應用資料分析技術進行顧客流失與顧客價值之研究,中原大學/資訊管理學系碩士論文。
    范錚強(2004),客戶關係管理-能見度、顧客關係、企業競爭度。
    陳佩怡(2010),應用服務品質機能展開法探討汽車長期租賃業服務品質之研究,元智大學/企業管理碩士在職專班碩士論文。
    黃石谷(2006),台灣汽車租賃產業經營策略分析,國立中央大學/管理學院高階主管企管碩士班碩士論文。
    黃致諳(2002),資料探勘技術用於結合客戶價值與客戶消費行為的直效行銷之研究,國立台灣科技大學/資訊研究所碩士論文。
    楊垂青(2010),影音租售業之資料庫行銷策略探討,長庚大學/管理學院碩士學位學程在職專班經營管理組碩士論文。

    葉淑慧(2008),汽車租賃業顧客滿意度與顧客忠誠度關係之個案研究,國立成功大學/高階管理碩士在職專班碩士論文。
    趙新銘(2006),服務創新、規範性評估、服務品質與顧客滿意度關係之研究-以小客車租賃業為例,國立成功大學/高階管理碩士在職專班碩士論文。
    劉桂明(2003),小客車長期租賃業成功交易模式之研究,國立台灣科技大學/管理研究所EMBA在職專班碩士論文。
    英文部分
    Berry, M. J. A. and Linoff, G., Data Mining Techniques for Marketing, Sales, and Customer Support, John Wiley & Sons, Inc., 1997.
    Bhatia,Anil, Customer Relationship Management, 1st ed.U.S.A.;Don Hull,1999.
    Blattberg,R. C.and John,D., Interactive marketing:Exploiting the age of addressability.Sloan Management Review,33,5-14,1991.
    Bugel, M. S. and Bus, B. A. H., The strategic utilisation of databasemarketing. The Journal of Database Marketing , 6(2), 156-163,1998.
    Carrier, C. G.and Povel, O., Characterising data mining software. Intelligent Data Analysis, 7, 181–192,2003.
    Cespedes, F. V. and Smith, H. J., Database Marketing: New Rules for Policy and Practice, Sloan Management Review, pp. 7-22, Summer, 1993.
    Curry, J.,Wurtz, W., Guido Thys, G., and Zijlstra, C.,Customer Marketing:How to Improve the Profitability of Your Customer Base, 1998.
    Fayyad, U. W., Data Mining and Knowledge Discovery: Making Sense out of Data, IEEE Expert, Vol.11 No.5, pp.22-23, October 1996.
    Frawley, W. J. G., Paitetsky-Shapiro, and. Matheus, C. J ,Knowledge Discovery in Database: An Overview, AI Magazine, pp. 213-228, Fall, 1992.

    Goodman, J., Retail/Database: Leveraging the Customer Database toYour Competitive Advantage. Direct Marketing,Garden City, Vol.55, Iss.8, p.26, 2 pgs, Dec 1992.
    Groupe, F. H.and Owrang, M M., Data Base Mining Discovery NewKnowledge and
    Cooperative Advatage, Information SystemManagement, Vol. 12, No. 4, 1995.
    Hand, H. M.and Smyth, P., Principles of Data Mining. MIT Press, Cambridge, MA. ISBN 0-262-08290-X,2001.
    Hughes, A. M., Strategic Database Marketing, Probus, Chicago, 1994.
    Kahan, S., Forging long-term relationships, The Practical Accountant, Vol. 31, No. 4, pp.675,1998.
    Kalakota, R., and Robinson, M., e-Business- Roadmap for Success, 2nd ed.,Addison-Wesley, Massachusetts, 2000.
    Koch, R., The 80/20 principle: the secret of achieving more with less, London, Nicholas Brealey, 1997.
    Kotler, P. and Armstrong, G., Principle ofMarketing,11th ed,2007.
    Kotler, P., Kartaiaya, H.and Setiawan, I.,Marketing 3.0: From Products to Customers to the Human Spirit, 2010.
    Mac Queen ,J.B., Some Methods for classification and Analysis of Multivariate Observations, Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, Vol. 1, pp. 281-297, 1967.
    McCorkell, G, Direct and Database Marketing, Kogan Page Limited, pp. 219-220,1997.
    Nicholson, S. The basis for bibliomining: Frameworks for bringing together usage-based data mining and bibliometrics through data warehousing in digital library services. Information Processing and Management, 42(3), 785-804,2006.
    Peacock P. R., Data Mining in Marketing: Part 1, Marketing Management, Vol. 6, pp.8-18, 1998.
    Peppers, D., and Rogers, M.,The one to One Future, Currency Doubleday, New York,January 1997.
    Peppers, D., Rogers, M. and Drof, B., “Is Your Company Ready for One-to-One Marketing?” Harvard Business Review, January-February, pp. 3-12, 1999.
    Robert, S.and Merlin, S. Database marketing strategy and implementation. North America: John Wiley and Sons Inc.1988.
    Rosenfield, J. R., Customer Relationship Management:A Brief History and A Big Mystery, February 2002. Available at:http://www.jrosenfield.com/articles/CRM-History.htm.
    Shani, D. and Chalasani, S., Exploiting Niches Using Relationship Marketing,The Journal of Consumer Marketing, Vol. 9, pp. 33-42, Summer, 1992.
    Shaw, R. and Stone, M., Database Marketing, Gower, NY. , 1990.
    Stone, B., Successful Direct Marketing Methods, Lincolnwood, IL: NTC BusinessBooks, pp. 29-35, 1995.
    Swift, R., Accelerating Customer Relationships, Prentice Hall, Upper Saddle River, NJ,2001.
    Tiwana, A., the Essential Guide to Knowledge Management, Prentice Hall PTR, Upper Saddle River, NJ,2001.
    Reichheld, F.and Sasser, W.,Zero defections: quality comes to services, Harvard Business Review 1990 Sep-Oct;68(5):105-110
    Rosenfield, J. R., Customer Relationship Management:A Brief History and A Big Mystery, February 2002. Available at:http://www.jrosenfield.com/articles/CRM-History.

    無法下載圖示 Full text public date 2018/01/28 (Intranet public)
    Full text public date This full text is not authorized to be published. (Internet public)
    Full text public date This full text is not authorized to be published. (National library)
    QR CODE