簡易檢索 / 詳目顯示

研究生: 林奕宏
Yi-Hong Lin
論文名稱: 以反算分析探討深開挖分析之土壤參數
A Study of Soil Parameters in Deep Excavation Using Inverse Analysis Technique
指導教授: 歐章煜
Chang-Yu Ou
口試委員: 謝佑明
Yo-Ming Hsieh
楊國鑫
Kuo-Hsin Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 167
中文關鍵詞: 深開挖反算分析擋土壁體變位
外文關鍵詞: deep excavation, back analysis, wall deflection
相關次數: 點閱:271下載:29
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以深開挖壁體變位為反算目標函數,探討土壤參數對於開挖分析之影響,並且選擇以ABAQUS做為分析軟體、MO-PSO為最佳化求解器進行分析。首先以實際開挖案例進行二向度平面應變分析,驗證土壤模式適用性,以及土壤與結構參數的選定標準。在執行反算分析前,先行決定差異評估方式、反算參數,並同時定義如何從所有組最佳解中,得到一組最終最佳解。反算目標函數以全部開挖階段、後幾階開挖階段以及最後一階開挖階段的組合進行反算,最後比較各項反算目標函數所得之反算參數結果,以及各階開挖階段之壁體變位與觀測值的差異。後幾階開挖階段所得之反算參數結果,能夠有合乎大地工程性質的解釋,而此反算參數所得之壁體變位在與觀測曲線的比較上,也能有相當接近的趨勢形狀。對照此反算參數與正算分析假設值的結果,亦能夠評估初始假設參數是否有高估或低估之情形。


The purpose of this study was to investigate the effects of soil parameters in deep excavation on the wall deflection with the inverse objective function. For analyzing, ABAQUS software and the MO-PSO as optimized solver were used. First of all, we validated the applicability of soil model and determined the standard value of soil and structure parameters in the excavation case by two dimensional plane-strain analysis. Before performing inverse analysis, the different evaluation method and inverse parameters would be determined first, also the final optimal solution was defined. The targets of the entire excavation stages, last few excavation stages and the final excavation stage were selected. Then, the inverse parameters results from inverse objective function were compared with each other and with those of the differences between the wall deflection and observation. In addition, from the inverse objective function in last few excavation stages, the inverse parameters performed reasonable explanation on geotechnical engineering properties, and yielded closer result to the observation curve on the shape of the wall deflection. Finally, the initial analyzed parameters were compared with the inverse parameter to evaluate its accuracy.

中文摘要 ABSTRACT 誌謝 目錄 表目錄 圖目錄 第一章 緒論 1.1 研究動機與目的 1.2 研究內容與方法 第二章 文獻回顧 2.1 深開挖擋土壁體之側向位移行為 2.1.1 擋土壁體之側向位移特性 2.1.2 影響擋土壁體側向位移之因素 2.2 反算分析之應用與內容 2.2.1 反算分析之流程 2.2.2 反算參數 2.2.3 多目標最佳化求解器 第三章 開挖案例模擬 3.1 土壤分析模式 3.2 土壤參數 3.2.1 排水層參數 3.2.2 不排水層參數 3.3 結構參數 3.3.1 連續壁參數 3.3.2 支撐參數 3.4 台北國家企業中心之案例分析 3.4.1 工程概述 3.4.2 分析參數之決定 3.4.3 分析之基本條件 3.5 分析模擬結果與結論 第四章 反算分析模擬驗證 4.1 反算分析所需檔案 4.2反算參數的結果依據 4.3 差異評估之判別 4.4 反算參數之決定 4.4.1 結構參數研究 4.4.2 土壤反算參數 4.5 結果與討論 第五章 開挖案例反算分析 5.1 案例正算分析之先行假設 5.2 案例反算分析之過程與內容 5.3 台北國家企業中心案例 5.3.1 反算分析 5.3.2 小結 5.4 志清大樓案例 5.4.1 工程概述 5.4.2 正算分析 5.4.3 反算分析 5.4.4 小結 5.5 綜合討論 第六章 結論與建議 6.1 結論 6.2 建議 參考文獻

1.亞新工程顧問股份有限公司 (1980),「志清大樓新建工程地下結構體施工安全觀測工作報告」,台北
2.鄧建剛 (1985),「有限元素法於台北市支撐開挖工程之應用研究」,碩士論文,國立台灣工業技術學院工程技術研究所,台北
3.亞新工程顧問股份有限公司 (1987),「台北盆地地層大地工程性質調查分析與研究工作」,台北
4.喬國華 (1992),「台北粉土質黏土在不同應力路徑下之力學行為」,碩士論文,國立台灣工業技術學院工程技術研究所,台北
5.吳沛軫、王俊明、彭嚴儒 (1997),「連續壁變形行為探討」,第七屆大地工程學術研究討論會,pp.601-608
6.廖瑞堂,歐章煜 (1997),「台北國家企業中心深開挖工程行為之研究-大地工程研究報告」,台北
7.謝百鈎 (1999),「黏土層開挖引致地盤移動之預測」,博士論文,國立台灣科技大學營建工程研究所,台北
8.劉泉枝 (1999),「台北黏土有效應力模式之研究」,博士論文,國立台灣科技大學營建工程研究所,台北
9.王獻增 (2000),「台北盆地黏性土壤不排水剪力強度之研究」,碩士論文,國立中央大學土木工程學系研究所,桃園
10.歐章煜 (2009),「深開挖工程-分析設計理論與實務(2版)」,科技圖書,台北
11.ABAQUS version 6.13 Documents, Hibbit, Karlsson & Sorenson, inc, Pawtucket, RI
12.ACI committee 318 (1995). “Building Code Requirements for Structure Concrete.” (ACI 318-95) Commentary (ACI 318R-95)
13.Bolton, M. D. (1986). “The strength and dilatancy of sands.” Geotechnique, Vol.36, No.1, pp.65-78
14.Brinkgreve, R. B. J. (2004). PLAXIS Manual 8.2, Plaxis bv, Netherlands
15.Clough, G. W. and Hansen, L. A. (1981). “Clay anisotropy and braced wall behavior.” Journal of Geotechnical Engineering Division, ASCE, Vol.107, No.7, pp.893-913
16.Clough, G. W. and O'Rourke, T. D. (1990). “Construction induced movements of in-situ walls.” Proceedings, Design and Performance of Earth Retainings Structure, ASCE Special Conference, Ithaca, New York, pp.439-470
17.Calvello, M. and Finno, R. J. (2004). “Selecting parameters to optimize in model calibration by inverse analysis.” Computers and Geotechnics, Vol.31, pp.411-425
18.Das, B. M. (2007). Principles of Foundation Engineering, SI, 7e. Cengage Learning, inc, USA
19.Dang, H. P. (2014). “Study of Three-dimension Excavation Behavior and Adjacent Structure Responses Using Advanced Soil Model and Inverse Analysis Technique.” Ph.D. thesis, Nat. Taiwan Uni. of Sci. and Tech., Taipei, Taiwan
20.Helwany, S. (2007). Applied Soil Mechanics with ABAQUS Application, John Wiley & Sons, Inc, Hoboken, New Jersey.
21.Hashash, Y. M. A., Levasseur, S., Osouli, A., Finno, R. J. and Malecot, Y. (2010). “Comparison of two analysis techniques for learning deep excavation response.” Computers and Geotechnics, Vol.37, No.3, pp.323-333
22.Huang, Z. H., Zhang, L. L., Cheng, S. Y., Zhang, J. and Xia, X. H. (2015). “Back-analysis and parameter identification for deep excavation based on pareto multiobjective optimization.” Journal of Aerospace Engineering, ASCE, Vol.28, No.6, A4014007
23.Jaky, J. (1944). “The coefficient of earth pressure at rest.” Journal of Society of Hungarian Architects and Engineers, Vol.78, No.22, pp. 355-358
24.Kennedy, J. and Eberhart, R. C. (1995). “Particle swarm optimization.” Proceedings of the 1995 IEEE International Conference on Neural Networks, pp.1942-1948
25.Khoiri, M. and Ou, C. Y. (2013). “Evaluation of deformation parameter for deep excavation in sand through case histories.” Computers and Geotechnics, Vol.47, pp. 57-67
26.Ladd, C. C., Foote, R., Ishihara, K., Schlosser, F. and Poulous, H. G. (1977). “Stress-deformation and strength characteristics,” State-of-the-ART Report, Proceedings of the Ninth International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol.2, pp.421-494
27.Lee, S. H. (1990). “Regression models of shear wave velocities in Taipei basin.” Journal of The Chinese Institute of Engineers, Vol.13, No.5, pp.519-532
28.Liu, C. C., Chen, S. H. and Cheng, W. L. (1998). “Undrained behavior of Taipei silty clay and under simple shear condition.” Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol.10, No.4, pp. 627-637 (in Chinese)
29.Lim, A., Ou, C. Y. and Hsieh, B. G. (2010). “Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions.” Journal of GeoEnginerring, Vol.5, No.1 pp. 9-20
30.Lim, A., Ou, C. Y. and Teng, F. C. (2015). “The influence of soil stress paths in deformation analysis of deep excavation under undrained conditions.” Acta Geotechnica.
31.Moh, Z. C., Chin, C. T., Liu, .C. J. and Woo, S. M. (1989). “Engineering correlations for soil deposits in Taipei.” Journal of the Chinese Institute of Engineering, Vol. 12, No. 3, pp. 273-283
32.Masuda, T., Einstein, H. H. and Mitachi, T. (1994). “Prediction of lateral deflection of diaphragm wall in deep excavations.” Journal of Geotechnical Engineering, Proceeding of Japan Society of Civil Engineers, No.505, Ⅲ-29, pp.19-20
33.Mulia, A. (2012). “Identification of Soil Constitutive Model Parameters Using Multiobjective Particle Swarming Optimization.” Master thesis, Nat. Taiwan Uni. of Sci. and Tech., Taipei, Taiwan
34.Ou C. Y., Hsieh, P. G. and Chiou, D. C. (1993). “Characteristics of ground surface settlement during excavation.” Canadian Geotechnical Journal, Vol.30, No.5, pp.758-767
35.Osouli, A. (2010). “The Interplay Between Field Measurements and Soil Behavior for Learning Supported Excavation Response.” Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois
36.Papon, A., Riou, Y., Dano, C. and Hicher, P. Y. (2012). “Single-and multi-objective genetic algorithm optimization for identifying soil parameters.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol.36, No.5, pp.597-618
37.Potts D. M. and Zdravkovic̍ L. (1990). Finite element analysis in geotechnical engineering: Theory, Thomas Telford Ltd, London
38.Reyes-Sierra M. and Coello Coello, C. A. (2006). “Multi-objective particle swarm optimizers: A survey of the State-of-the-ART,” International Journal of Computational Intelligence Research, Vol.2, No.3, pp.287-308
39.Reddy, M. J. and Kumar, D. N. (2007). “An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design.” Engineering Optimization, Vol.39, No.1, pp.49-68
40.Tang, Y. G. and Kung, G. T. C. (2009). “Application of nonlinear optimization technique to back analysis of deep excavation.” Computers and Geotechnics, Vol.36, pp.279-290
41.Vermeer, P. A. and Wehnert, M. (2005). “Examples of finite elements applications – you never-stop learning.” FEM in geotechnical engineering – quality, testing, case studies, pp.101-119, Hamburg (in German)
42.Woo, S. M. and Moh, Z. C. (1990). “Geotechnical characteristics of soils in Taipei basin.” Proceeding, 10th Southeast Asian Geotechnical Conference, Special Taiwan Session, Taipei, Vol.2, pp.51-65
43.Zentar R., Hicher P. and Moulin G. (2001). “Identification of soil parameters by inverse analysis.” Computers and Geotechnics, Vol. 28, No.2, pp.129-144
44.Zhao, B. D., Zhang, L. L., Jeng, D. S., Wang, J. H. and Chen, J. J. (2014). “Inverse analysis of deep excavation using differential evolution algorithm.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol.39, No.2, pp.115-134

QR CODE