研究生: |
郭孟澤 MENG-TSE KUO |
---|---|
論文名稱: |
具三倍壓整流輸出之高壓LED驅動器研製 Study and Implementation of a High-Voltage LED Driver with Voltage Tripler Rectification |
指導教授: |
羅有綱
Yu-Kang Lo 邱煌仁 Huang-Jen Chiu |
口試委員: |
劉益華
Yi-Hua Liu |
學位類別: |
碩士 Master |
系所名稱: |
電資學院 - 電子工程系 Department of Electronic and Computer Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | LED驅動器 、無橋式功率因數修正器 、半橋串聯諧振轉換器 、三倍壓整流電路 、定電壓控制 、定電流控制 |
外文關鍵詞: | LED driver, bridgeless power factor corrector, half-bridge series resonant converter, voltage tripler rectifier, constant voltage control, constant current control |
相關次數: | 點閱:645 下載:18 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研製高效率、高功率因數LED驅動器,選用無橋式功率因數修正器為前級電路架構,藉以降低導通損耗提高轉換效率;另外藉由操作在邊界導通模式,使得開關能近似於零電壓切換,且二極體也能達到零電流截止,有效降低切換損失。後級直流-直流轉換器分別採用半橋串聯諧振橋式整流轉換器與半橋串聯諧振三倍壓整流轉換器,因其具有零電壓切換之優點,故能減少一次側之切換損失。最後實際製作兩部交流輸入90 V~260 V/60 Hz、直流輸出215 V、150.5 W,具有定電壓控制、定電流控制的LED驅動器,並驗證不同後級直流-直流架構皆能達到高效率、高功因的目的。
This thesis focuses on the study and implementation of high-efficiency, high-power factor (PF) LED drivers. The front-end rectifier is a bridgeless power factor corrector (PFC) to reduce the conduction losses and improve the efficiency. By operating under boundary conduction mode, near zero-voltage switchings for the active switches and zero-current switchings for the diodes are achieved, which can further reduce the switching losses. For the post-stage DC-DC converter, half-bridge series resonant converters with bridge rectifier and voltage tripler rectifier, respectively, are adopted. The switching losses at primary side can be reduced by zero-voltage-switching feature. Two LED drivers with an input voltage of 90 to 260 Vrms/60 Hz, a DC output voltage of 215 V, and an output power of 150.5 W are implemented and tested. Constant voltage control and constant current control are also fulfilled. Both the presented DC-DC topologies are verified to achieve high efficiency and high PF.
[1]LED產業網,http://www.ledinside.com.tw/ 。
[2]劉厚龍,「高效能電原適配器研製」,國立台灣科技大學電機工程系碩士論文,2013年。
[3]B. Yang, “Topology Investigation for Front-End DC/DC Power Conversion for Distributed Power System,” Ph. D. Dissertation, Universtiy of Southern California, Sept. 2003。
[4]B. Yang, F. C. Lee, A. J. Zhang, and G. S. Huang, “LLC resonant converter for front-end DC/DC conversion,” in Proc. IEEE Applied Power Electronics Conference and Exposition, 2002, pp. 1108-1112.
[5] S. C. Wong, A. D. Brown, Y. S. Lee, and S. W. Ng, “Parasitic losses modeling of a series resonant converter circuit,” in Proc. IEEE International Symposium on Circuits and Systems, June 1997, pp. 921-924.
[6] A. K. S. Bhat, “Analysis and design of a modified series resonant converter,” IEEE Transactions on Power Electronics, vol. 8, no. 4, pp. 423-430, Oct. 1993.
[7]M. K. Kazimierczuk and S. Wong, “Frequency-domain analysis of series resonant converter for continuous conduction mode,” IEEE Transactions on Power Electronics, vol. 7, no. 2, pp. 270-279, Apr. 1992.
[8]R. Liu, C. Q. Lee, and A. K. Upadhyay, “Experimental study of the LLC-type series resonant converter,” in Proc. IEEE Asia Pacific Ecomonic Cooperation, 1990, pp. 31-37.
[9]PowerStudies, Inc., Power Factor-The Basics, http://www.powerstudies.com/sites/www.powerstudies.com/files/PowerFactorBasicsArticle.pdf.
[10]P. C. Todd, “UC3854, Controlled Power Factor Correction Circuit Design,” U-134, Unitrode Application Note, 1999.
[11]L. Dixon, “Average Current Mode Control of Switching Power Supplies,” U-140, Unitrode Application Note, 1999.
[12]K. S. Fung, “Analysis and Measurement of DCM Power Factor Correctors,” M. S. Thesis, The Hong Kong University of Science and Technology, Aug. 1998.
[13]C. Adragna, “L6561, Enhanced Transition Mode Power Factor Corrector,” AN966, ST Microelectronics Application Note, Mar. 2003.
[14]C. Ortmeyer and C. Adragna, “Design Tips for L6561 Power Factor Corrector in Wide Range,” AN1214, ST Microelectronics Application Note, Dec. 2000.
[15]Fairchild Semiconductor, “AN-6961, Critical Conduction Mode PFC Controller,” Datasheet, 2009.
[16]Texas Instruments, “UCC28070 Implement Bridgeless Power Factor Correction (PFC) Pre-Regulator Design,” Datasheet, 2009.
[17]L. Huber, Y. Jang, and M. M. Jovanovi, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1381-1390, Mar. 2008.
[18]W. Y. Choi, J. M Kwon, and B. H. Kwon, “Bridgeless dual-boost rectifier with reduced diode reverse-recovery problems for power-factor correction,” IET Power Electronics, vol. 1, no. 2, pp. 194-202, June 2008.
[19]J. M. Hancock, “Bridgeless PFC Boosts Low-Line Efficiency,” Power Electronic Technology, 802PET20, Feb. 2008.
[20]H. Ye, Z. Yang, J. Dai, C. Yan, X. Xin, and J. Ying, “Common mode noise modeling and analysis of dual boost PFC circuit,” in Proc. IEEE 26th Annual International Telecommunications Energy Conference, Sept. 2004.
[21]G. C. Chryssis 著,梁適安譯,「高頻交換式電源供應器」,全華科技圖書,1995 年。
[22]顏上進,「串聯諧振轉換器輕載調制策略之研究」,國立台灣科技大學電子工程系博士論文,2006 年10 月。
[23]鐘郁偉,「符合能源之星規範個人電腦電源供應器之研製」,國立台灣科技大學電子工程系碩士論文,2008 年。
[24] A. I. Pressman, K. Billings, and T. Morey, Switching Power Supply Design, Third Edition, McGraw-Hill, 2009.
[25] 洪振傑,「高效能500W 個人電腦電源供應器之研製」,國立台灣科技大學電子工程系碩士論文,2009 年。
[26]R. Liu, L. Batarseh, and C. Q. Lee, “Comparison of performance characteristics between LLC-type and conventional parallel resonant converters,” Electronics Letters, vol. 24, no. 24, pp. 1510-1511, 1988.
[27]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics:Converters, Applications, and Design, Third Edition, John Wiley & Sons Inc., 2003.
[28]Fairchild Semiconductor, “FAN6961”, Datasheet, 2008.
[29]Texas Instruments, “UCC25600”, Datasheet, 2008.
[30]陳文富,「200 瓦LED 路燈電源供應器研製」,國立台灣科技大學電子工程系碩士論文,2010 年。
[31]STMicroelectronics, “TSM103/A,” Datasheet, 1999.