簡易檢索 / 詳目顯示

研究生: 劉彥慶
Yen-Ching Liu
論文名稱: 三維列印光固化奈米磁性複合材料對骨母細胞增長與分化的影響
The effects of photo-curing magnetic nanocomposites on the growth and differentiation of osteoblasts
指導教授: 何明樺
Ming-Hua Ho
口試委員: 陳崇賢
Chorng-Shyan Chern
王潔
Jane Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 116
中文關鍵詞: 光固化3D列印奈米四氧化三鐵奈米磁性複合材料
外文關鍵詞: DLP 3D printer, magnetic nanoparitcles, magneitc nanocomposites
相關次數: 點閱:207下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,將四氧化三鐵奈米粒子與具生物相容性的光固化樹脂混合,接著使用光數位列印機(Digital Light Printing, DLP)製造用於培養成骨細胞的奈米複合材料,並測試細胞於材料生長及分化情形。
    本研究中使用的是具生物相容性且末端被酯化成含有光反應性C = C可光可固化的聚丙二醇(Polypropylene Glycol, PPG),並額外添加單體(EOEOEA)改善光反應性樹脂的流變性。
    接著透過四乙氧基矽烷(Tetraethoxysilane, TEOS)改質四氧化三鐵奈米粒子表面,本實驗成功在四氧化三鐵表面形成一層約45nm的無定形二氧化矽,並且達到均勻單核包覆,有效降低奈米粒子本身因凡德瓦力的聚集,並增強四氧化三鐵奈米粒子於光固化樹脂中的分散能力。實驗結果顯示,四氧化三鐵奈米粒子在光反應性樹脂中最多穩定二十八天且最大穩定含量最高可達10wt%左右,在列印時列印濃度可達最大2wt%且未觀察到明顯的聚集及沉降現象產生。
    使用光數位列印機在405nm波長下進行快速成型之後,得到由四氧化三鐵奈米粒子組成的奈米複合材料,接著將骨母細胞培養於光固化奈米磁性複合材料上。實驗結果證明,細胞活性明顯的提升,且加速細胞的提前分化。


    In this research, we blended the magnetic nanoparticles with biocompatible and photo-curable resin. The magnetic nanocomposite was produced by using the digital light processing (DLP) 3D printer and then used for cell proliferation and differentiation.
    The biocompatible and photo-curable oligomers in resin were composed of polypropylene glycol (PPG), while the end of these oligomers were esterified for the addition of photo-reactive C=C bonds. Besides, EOEOEA was also added to improve the rheological and mechanical properties of photo-reactive resin.
    Then, we functionalized magnetic nanoparticles with Tetraethyl orthosilicate (TEOS) to prevent the aggregation. The thickness of amorphous silica layers were about 45nm and efficiently enhances the uniform dispersion of magnetic nanoparticles. The suspension of magnetic nanoparticles was stable in photo-reactive resin at least for 28 days. The highest amount of magnetic nanoparticles was 10wt% for a long-term uniform suspension. The maximum particle concentration of nanocomposite for DLP printing process was about 2wt% due to the emission of UV light.
    After the rapid prototyping with DLP under the wavelength of 405 nm, uniform nanocomposites composed of UV-cured polymers and magnetic nanoparticles were obtained with designed structures. The culture of osteoblasts was carried out on the 3D magnetic scaffolds. It show that the magnetic nanoparticles promote the cell proliferation and differentiation.

    摘要 I Abstract II 致謝 IV 目錄 VI 圖目錄 XI 表目錄 XIV 第一章 緒論 1 第二章 文獻回顧 3 2.1 積層製造介紹 3 2.1.1 積層製造領域現況與未來趨勢 3 2.1.2 積層製造於生醫領域的應用 4 2.1.3 光固化成型技術 5 2.2 光固化系統 6 2.2.1 光固化系統組成 6 2.2.2 光固化系統成型機制 8 2.2.3 光固化速率影響因素 11 2.3 奈米粒子介紹 14 2.3.1 奈米粒子聚集特性 14 2.3.2 奈米粒子表面改質 15 2.4 四氧化三鐵(Fe3O4)奈米粒子 18 2.4.1 超順磁性四氧化三鐵奈米粒子 19 2.4.2 四氧化三鐵奈米粒子於生醫應用 20 2.5 奈米複合材料介紹 21 2.5.1 奈米複合材料發展 21 2.5.2 奈米複合材料製備方法 23 2.5.3 奈米複合材料特性 26 2.5.4 四氧化三鐵奈米複合材料生醫應用 28 2.6 奈米複合材料於光固化3D列印 30 2.7 骨母細胞分化標記 33 第三章 實驗材料與方法 36 3.1 實驗藥品 36 3.2 實驗儀器 39 3.3 實驗步驟 41 3.3.1 四氧化三鐵合成 41 3.3.2 四氧化三鐵改質 41 3.3.3 四氧化三鐵奈米複合材料製備 42 3.4 材料鑑定與性質檢測 43 3.4.1 高功率X光繞射儀(XRD)分析 43 3.4.2 傅立葉轉換紅外線光譜儀(FTIR)分析 43 3.4.3 穿透式電子顯微鏡(TEM)樣品分析 43 3.4.4 雷射界面電位分析儀暨粒徑(DLS)分析儀 44 3.4.5 振動樣品磁力計(VSM) 44 3.4.6 接觸角量測儀(Contact Angle Meter) 45 3.4.7 多功能固體密度測試儀 45 3.5 奈米四氧化三鐵添加量及分散性分析 46 3.5.1 光固化材料成型時間分析 46 3.5.2 奈米四氧化三鐵分散性分析 46 3.6 體外細胞測試 47 3.6.1 光固化奈米磁性複合材料試片製作 47 3.6.2 生物相容性檢測方式與操作 47 3.6.3 細胞來源 49 3.6.4 細胞培養 50 3.6.5 細胞冷凍與保存 50 3.6.6 細胞解凍及培養 51 3.6.7 細胞播種 51 3.6.8 細胞計數 52 3.6.9 粒線體活性測試 54 3.6.10 鹼性磷酸酶測試 56 3.6.11 蛋白質濃度測定 58 3.6.12 掃描式電子顯微鏡觀察前之細胞樣本處理 60 第四章 實驗結果與討論 62 4.1 四氧化三鐵(Fe3O4)之鑑定 62 4.1.1 XRD結晶結構分析 62 4.1.2 粒徑及分散性分析 63 4.1.3 磁滯留曲線分析 65 4.2 四氧化三鐵 (Fe3O4@SiO2)改質之鑑定 66 4.2.1 表面型態分析 66 4.2.2 XRD結晶結構分析 68 4.2.3 傅立葉轉換紅外線光譜儀 (FTIR)分析 69 4.2.4 粒徑及分散性分析 70 4.2.5 磁滯留曲線分析 72 4.3 四氧化三鐵/光固化樹枝複合材料 73 4.3.1 分散性分析 73 4.3.2 添加量對光固化時間的影響 78 4.3.3 光固化複合試片分散性檢測 80 4.3.4 材料親疏水性分析 82 4.3.5 材料收縮率的影響 85 4.3.6 磁滯曲線分析 87 4.3.7 骨母細胞的活性表現 89 4.3.8 骨母細胞的型態觀察 92 4.3.9 骨母細胞的分化表現 96 4.3.10 三維列印支架及骨母細胞生長情形 99 第五章 結論 102 參考文獻 104

    1. Wong, K.V. and A. Hernandez, A Review of Additive Manufacturing. ISRN Mechanical Engineering, 2012. 2012: p. 1-10.
    2. Yan, X. and P. Gu, A review of rapid prototyping technologies and systems. Computer-Aided Design, 1996. 28: p. 307-318.
    3. Lu, B., D. Li, and X. Tian, Development Trends in Additive Manufacturing and 3D Printing. Engineering, 2015. 1: p. 85-89.
    4. Frazier, W.E., Metal Additive Manufacturing: A Review. Journal of Materials Engineering and Performance, 2014. 23: p. 1917-1928.
    5. Mueller, B., Additive manufacturing technologies–Rapid prototyping to direct digital manufacturing. Assembly Automation, 2012. 32: p. 1-18.
    6. Ventola, C.L., Medical Applications for 3D Printing : Current and Projected Uses. P&T, 2014. 39: p. 704.
    7. Cui, X., T. Boland, D.D. D’Lima, and a.M.K. Lotz, Thermal Inkjet Printing in Tissue Engineering and Regenerative Medicine. Recent Pat Drug Deliv Formul, 2012. 6: p. 149–155.
    8. Gross, B.C., J.L. Erkal, S.Y. Lockwood, C. Chen, and D.M. Spence, Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem, 2014. 86: p. 3240-3253.
    9. Schubert, C., M.C. van Langeveld, and L.A. Donoso, Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol, 2014. 98: p. 159-161.
    10. Banks, J., Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse, 2013. 4: p. 22-26.
    11. Hoy, M.B., 3D printing: making things at the library. Med Ref Serv Q, 2013. 32: p. 94-99.
    12. Jorge, B.P., Stereolithography: materials, processes and applications. 2011. 1: p. 37-56.
    13. Geng Hsi Wu and S.H. Hsu, polymeric-based 3D printing for tissue engineering. Journal of medical and biological engineering, 2015. 35: p. 285-292.
    14. Crivello, J.V. and E. Reichmanis, Photopolymer materials and processes for advanced technologies. Chemistry of Materials, 2013. 26: p. 533-548.
    15. Phillips and Roger, Photopolymerization. Journal of Photopolymerization, 1984. 25: p. 79-82.
    16. Shui, L., G.M. R., J. Guo, and S.J. T., High Intensity Response of Photopolymer Materials for Holographic Grating Formation. Macromolecules, 2010. 43: p. 9462-9472.
    17. Lipson, H. and M. Kurman, Fabricated: The new world of 3D printing. 2013: p. 1-280.
    18. Pandey, R., Photopolymers in 3D printing applications. 2014: p. 10-14.
    19. Ravve, A., Light-associated reactions of synthetic polymers. 2006: p. 23-315.
    20. Christian, D., Kinetic study and new applications of UV radiation curing. Macromolecular Rapid Communications, 2002. 23: p. 1067-1093.
    21. Sanai, Y., Y. Morita, Y. Asano, K. Ishizaki, and K. Kubota, Chain‐end lactonization of polyacrylates prepared by photopolymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2014. 52: p. 1161-1171.
    22. Yildiz, E., H. Güçlü, H. Yildirim, A. Kuyulu, and A. Güngör, Effects of reactive diluents on mechanical and physical properties of a UV curable acrylated urethane prepolymer. Macromolecular Materials and Engineering, 1995. 230: p. 105-115.
    23. Yoshii, F., K. Makuuchi, S. Kikukawa, T. Tanaka, J. Saitoh, and K. Koyama, High‐melt‐strength polypropylene with electron beam irradiation in the presence of polyfunctional monomers. Journal of Applied Polymer Science, 1996. 60: p. 617-623.
    24. Scherzer, T. and U. Decker, The effect of temperature on the kinetics of diacrylate photopolymerizations studied by real-time FTIR spectroscopy. Polymer, 2000. 41: p. 7681-7690.
    25. Ali, K., M.A. Khan, M. Zaman, and M. Hossain, Reactive diluent effect on properties of UV‐cured films. Journal of applied polymer science, 1994. 54: p. 309-315.
    26. Crivello, J.V., The discovery and development of onium salt cationic photoinitiators. Journal of Polymer Science Part A: Polymer Chemistry, 1999. 37: p. 4241-4254.
    27. Tunc, D. and Y. Yagci, Thioxanthone-ethylcarbazole as a soluble visible light photoinitiator for free radical and free radical promoted cationic polymerizations. Polymer Chemistry, 2011. 2: p. 2557-2563.
    28. Sabol, D., M.R. Gleeson, S. Liu, and J.T. Sheridan, Photoinitiation study of Irgacure 784 in an epoxy resin photopolymer. Journal of Applied Physics, 2010. 107: p. 053113.
    29. Shintani, H., T. Inoue, and M. Yamaki, Analysis of camphorquinone in visible light-cured composite resins. Dental Materials, 1985. 1: p. 124-126.
    30. Schneider, L.F.J., L.M. Cavalcante, S.A. Prahl, C.S. Pfeifer, and J.L. Ferracane, Curing efficiency of dental resin composites formulated with camphorquinone or trimethylbenzoyl-diphenyl-phosphine oxide. Dental Materials, 2012. 28: p. 392-397.
    31. Takata, T., F. Sanda, T. Ariga, H. Nemoto, and T. Endo, Cyclic carbonates, novel expandable monomers on polymerization. Macromolecular rapid communications, 1997. 18: p. 461-469.
    32. Koseki, K.I., H. Sakamaki, and K.M. Jeong, In situ measurement of shrinkage behavior of photopolymers. Journal of Photopolymer Science and Technology, 2013. 26: p. 567-572.
    33. Kim, W.S., Y.C. Jeong, and J.K. Park, Organic-inorganic hybrid photopolymer with reduced volume shrinkage. Applied Physics Letters, 2005. 87: p. 1-3.
    34. Allen, N.S., Photoinitiators for UV and visible curing of coatings: mechanisms and properties. Journal of Photochemistry and Photobiology A: chemistry, 1996. 100: p. 101-107.
    35. Wang, D.H., X.Y. Huang, and W.C. Fan, Factors Influencing the Curing Speed of UV-Curing Coatings. Paint & Coatings Industry, 2004. 3: p. 62-71.
    36. Endruweit, A., M. Johnson, and A. Long, Curing of composite components by ultraviolet radiation: A review. Polymer composites, 2006. 27: p. 119-128.
    37. Kuo, K.H., W.Y. Chiu, and T.M. Don, Kinetic behavior of photo‐polymerization of UV‐curable resins with carboxylic acid and amino groups. Journal of applied polymer science, 2010. 115: p. 1982-1994.
    38. Moad, G., J. Chiefari, R.T. Mayadunne, C.L. Moad, A. Postma, E. Rizzardo, and S.H. Thang, Initiating free radical polymerization. Macromolecular Symposia, 2002. 182: p. 65-80.
    39. Decker, C., Photoinitiated crosslinking polymerisation. Progress in polymer science, 1996. 21: p. 593-650.
    40. Fouassier, J., X. Allonas, and D. Burget, Photopolymerization reactions under visible lights: principle, mechanisms and examples of applications. Progress in organic coatings, 2003. 47: p. 16-36.
    41. Ogliari, F.A., C. Ely, C.L. Petzhold, F.F. Demarco, and E. Piva, Onium salt improves the polymerization kinetics in an experimental dental adhesive resin. Journal of dentistry, 2007. 35: p. 583-587.
    42. Monroe, B.M. and G.C. Weed, Photoinitiators for free-radical-initiated photoimaging systems. Chemical Reviews, 1993. 93: p. 435-448.
    43. Alonso, R.C.B., W.C. Brandt, E.J.C. Souza Junior, R.M. Puppin-Rontani, and M.A.C. Sinhoreti, Photoinitiator concentration and modulated photoactivation: influence on polymerization characteristics of experimental composites. Applied Adhesion Science, 2014. 2: p. 2-10.
    44. Alonso, R.C.B., E.J.C. De Souza Júnior, D. Dressano, G.A.S. De Araújo, J.M.C. Rodriguez, V. Di Hipólito, C. Anauate Netto, R.M. Puppin Rontani, and M.A.C. Sinhoreti, Effect of photoinitiator concentration on marginal and internal adaptation of experimental composite blends photocured by modulated methods. European journal of dentistry, 2013. 7: p. 1-8.
    45. Yoshida, K. and E. Greener, Effect of photoinitiator on degree of conversion of unfilled light-cured resin. Journal of dentistry, 1994. 22: p. 296-299.
    46. Fleming, M.G. and W.A. Maillet, Photopolymerization of composite resin using the argon laser. Journal-Canadian Dental Association, 1999. 65: p. 447-452.
    47. Brandt, W.C., L.F.J. Schneider, E. Frollini, L. Correr-Sobrinho, and M.A.C. Sinhoreti, Effect of different photo-initiators and light curing units on degree of conversion of composites. Brazilian oral research, 2010. 24: p. 263-270.
    48. Lecamp, L., B. Youssef, C. Bunel, and P. Lebaudy, Photoinitiated polymerization of a dimethacrylate oligomer: 1. Influence of photoinitiator concentration, temperature and light intensity. Polymer, 1997. 38: p. 6089-6096.
    49. Keller, L., C. Decker, K. Zahouily, S. Benfarhi, J. Le Meins, and J. Miehe-Brendle, Synthesis of polymer nanocomposites by UV-curing of organoclay–acrylic resins. Polymer, 2004. 45: p. 7437-7447.
    50. Lee, J.H., R.K. Prud'Homme, and I.A. Aksay, Cure depth in photopolymerization: experiments and theory. Journal of Materials Research, 2001. 16: p. 3536-3544.
    51. Cook, W.D., Factors affecting the depth of cure of UV-polymerized composites. Journal of Dental Research, 1980. 59: p. 800-808.
    52. Pfaff, G., Special effect pigments: technical basics and applications. 2008: p. 1-218.
    53. Hongmei, L., Stereolithography using compositions containing ceramic powders. 1998: p. 69-73.
    54. Fujigaya, T., S. Haraguchi, T. Fukumaru, and N. Nakashima, Development of novel carbon nanotube/photopolymer nanocomposites with high conductivity and their application to nanoimprint photolithography. Advanced Materials, 2008. 20: p. 2151-2155.
    55. Cho, J.D., Y.B. Kim, H.T. Ju, and J.W. Hong, The effects of silica nanoparticles on the photocuring behaviors of UV-curable polyester acrylate-based coating systems. Macromolecular research, 2005. 13: p. 362-365.
    56. Zhang, W., Nanoparticle aggregation: principles and modeling. Nanomaterial, 2014. 811: p. 19-43.
    57. Faure, B., G. Salazar Alvarez, A. Ahniyaz, I. Villaluenga, G. Berriozabal, Y.R. De Miguel, and L. Bergström, Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. Science and technology of advanced materials, 2013. 14: p. 1-23.
    58. Uyanik, M., Snythesis and characterization of TiO2 nanostars. 2008: p. 55-59.
    59. Sheng, G., S. Xiaodong, and L. Benlan, Surface organic modification of Fe3O4 nanoparticles by silane-coupling agents. Rare Metals, 2006. 25: p. 426-430.
    60. Ding, H., Y. Zhang, S. Wang, J. Xu, S. Xu, and G. Li, Fe3O4@ SiO2 core/shell nanoparticles: the silica coating regulations with a single core for different core sizes and shell thicknesses. Chemistry of Materials, 2012. 24: p. 4572-4580.
    61. Tadjarodi, A., A. Abbaszadeh, M. Taghizadeh, N. Shekari, and A.A. Asgharinezhad, Solid phase extraction of Cd (II) and Pb (II) ions based on a novel functionalized Fe3O4@ SiO2 core-shell nanoparticles with the aid of multivariate optimization methodology. Materials Science and Engineering: C, 2015. 49: p. 416-421.
    62. Rong, M.Z., M.Q. Zhang, Y.X. Zheng, H.M. Zeng, R. Walter, and K. Friedrich, Structure–property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer, 2001. 42: p. 167-183.
    63. Tsubokawa, N., A. Kogure, and Y. Sone, Grafting of polyesters from ultrafine inorganic particles: copolymerization of epoxides with cyclic acid anhydrides initiated by COOK groups introduced onto the surface. Journal of Polymer Science Part A: Polymer Chemistry, 1990. 28: p. 1923-1933.
    64. Rong, M.Z., Q.L. Ji, M.Q. Zhang, and K. Friedrich, Graft polymerization of vinyl monomers onto nanosized alumina particles. European polymer journal, 2002. 38: p. 1573-1582.
    65. Cornell, R.M. and U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences and uses. 2003: p. 221-252.
    66. Boothman, C., A.M. Sánchez, and S. van Dijken, Structural, magnetic, and transport properties of Fe3O4/Si (111) and Fe3O4/Si (001). Journal of applied physics, 2007. 101: p. 1-7.
    67. Bean, C. and U.D. Livingston, Superparamagnetism. Journal of Applied Physics, 1959. 30: p. 120-129.
    68. Sharifi, I., H. Shokrollahi, and S. Amiri, Ferrite-based magnetic nanofluids used in hyperthermia applications. Journal of Magnetism and Magnetic Materials, 2012. 324: p. 903-915.
    69. Gädke, J., J.W. Thies, L. Kleinfeldt, T. Schulze, R. Biedendieck, I. Rustenbeck, G. Garnweitner, R. Krull, and A. Dietzel, Selective Manipulation Of Superparamagnetic Nanoparticles For Product Purification And Microfluidic Diagnostics. European Journal of Pharmaceutics and Biopharmaceutics, 2017. 126: p. 67-74.
    70. Wang, Y.X.J., Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quantitative imaging in medicine and surgery, 2011. 1: p. 35-40.
    71. Yu, M.K., Y.Y. Jeong, J. Park, S. Park, J.W. Kim, J.J. Min, K. Kim, and S. Jon, Drug‐loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angewandte Chemie, 2008. 120: p. 5442-5445.
    72. Guardia, P., R. Di Corato, L. Lartigue, C. Wilhelm, A. Espinosa, M. Garcia-Hernandez, F. Gazeau, L. Manna, and T. Pellegrino, Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS nano, 2012. 6: p. 3080-3091.
    73. Cao, M., Z. Li, J. Wang, W. Ge, T. Yue, R. Li, V.L. Colvin, and W.Y. William, Food related applications of magnetic iron oxide nanoparticles: enzyme immobilization, protein purification, and food analysis. Trends in Food Science & Technology, 2012. 27: p. 47-56.
    74. Roy, R., R.A. Roy, and D.M. Roy, Alternative perspectives on “quasi-crystallinity”: non-uniformity and nanocomposites. Materials Letters, 1986. 4: p. 323-328.
    75. Roy, R., S. Komarneni, and D. Roy, Multi-phasic ceramic composites made by sol-gel technique. MRS Online Proceedings Library Archive, 1984. 32: p. 347-359.
    76. Roy, R., D. Hoffmann, and S. Komarneni, New Sol-Gel Strategies for Making Ceramic-Ceramic Composites. Am. Ceram. Soc. Bull, 1984. 63: p. 459.
    77. Komarneni, S., Nanocomposites. Journal of Materials Chemistry, 1992. 2: p. 1219-1230.
    78. Fawaz, J. and VikasMittal, Synthesis of Polymer Nanocomposites: Review of Various Techniques. 2015: p. 1-26.
    79. Manias, E., A. Touny, L. Wu, K. Strawhecker, B. Lu, and T. Chung, Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chemistry of Materials, 2001. 13: p. 3516-3523.
    80. Morgan, A.B. and J. Gilman, Polymer-clay nanocomposites: design and application of multi-functional materials. Mater. Matters, 2007. 2: p. 20-25.
    81. Okada, A., Y. Fukushima, M. Kawasumi, S. Inagaki, A. Usuki, S. Sugiyama, T. Kurauchi, and O. Kamigaito, Composite material and process for manufacturing same. 1988.
    82. McCann, K., Nanocomposites: The future of automotive plastics. AutoTechnology, 2001. 1: p. 50-51.
    83. Utracki, L.A., Clay-containing polymeric nanocomposites. 2004. 1: p. 1-416.
    84. Fu, G., P.S. Vary, and C.T. Lin, Anatase TiO2 nanocomposites for antimicrobial coatings. The Journal of Physical Chemistry B, 2005. 109: p. 8889-8898.
    85. Xiong, M., G. Gu, B. You, and L. Wu, Preparation and characterization of poly (styrene butylacrylate) latex/nano‐ZnO nanocomposites. Journal of Applied Polymer Science, 2003. 90: p. 1923-1931.
    86. Hussain, F., M. Hojjati, M. Okamoto, and R.E. Gorga, Polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. Journal of composite materials, 2006. 40: p. 1511-1575.
    87. Choudhary, V. and A. Gupta, Polymer/carbon nanotube nanocomposites. Carbon nanotubes-polymer nanocomposites, 2011: p. 66-80.
    88. Potts, J.R., D.R. Dreyer, C.W. Bielawski, and R.S. Ruoff, Graphene-based polymer nanocomposites. Polymer, 2011. 52: p. 5-25.
    89. Campbell, T.A. and O.S. Ivanova, 3D printing of multifunctional nanocomposites. Nano Today, 2013. 8: p. 119-120.
    90. Postiglione, G., G. Natale, G. Griffini, M. Levi, and S. Turri, Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Composites Part A: Applied Science and Manufacturing, 2015. 76: p. 110-114.
    91. Brinker, C.J. and G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. 2013: p. 1-912.
    92. Yari, M. and S. Sedaghat, In-situ synthesis and characterization of conducting metal—polyaniline nanocomposites. Journal of Physical & Theoretical Chemistry, 2009. 5: p. 13-18.
    93. Fawaz, J. and V. Mittal, Synthesis of polymer nanocomposites: review of various techniques. Synthesis Techniques for Polymer Nanocomposites, 2015: p. 1-30.
    94. Van Zyl, W.E., M. De La Luz Garcia-Curiel, B.A. Schrauwen, B.J. Kooi, J.T.M. De Hosson, and H. Verweij, Hybrid polyamide/silica nanocomposites: synthesis and mechanical testing. Macromolecular materials and engineering, 2002. 287: p. 106-110.
    95. Plueddemann, E.P., Adhesion through silane coupling agents. The Journal of Adhesion, 1970. 2: p. 184-201.
    96. OWEN, M.J., Coupling agents: chemical bonding at interfaces. Adhesion Science and Engineering, 2002. 2: p. 403–431.
    97. Pomogailo, A.D. and V.N. Kestelman, Metallopolymer nanocomposites. 2006. 81: p. 3-236.
    98. Eisa, W.H., Y.K. Abdel Moneam, A. Shabaka, and A.E.M. Hosam, In situ approach induced growth of highly monodispersed Ag nanoparticles within free standing PVA/PVP films. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012. 95: p. 341-346.
    99. Kamigaito, O., What can be improved by nanometer composites? Journal of the Japan Society of Powder and Powder Metallurgy, 1991. 38: p. 315-321.
    100. Manias, E., Nanocomposites: Stiffer by design. Nature Materials, 2007. 6: p. 9-11.
    101. Sen, S., J.D. Thomin, S.K. Kumar, and P. Keblinski, Molecular underpinnings of the mechanical reinforcement in polymer nanocomposites. Macromolecules, 2007. 40: p. 4059-4067.
    102. Ou, Y., F. Yang, and Z.Z. Yu, A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization. Journal of Polymer Science Part B: Polymer Physics, 1998. 36: p. 789-795.
    103. Tsai, J.L. and S.H. Tzeng, Characterizing mechanical properties of particulate nanocomposites using micromechanical approach. Journal of composite materials, 2008. 42: p. 2345-2361.
    104. Gilman, J.W., Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites1. Applied clay science, 1999. 15: p. 31-49.
    105. Guo, Z., K. Shin, A.B. Karki, D.P. Young, R.B. Kaner, and H.T. Hahn, Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites. Journal of Nanoparticle Research, 2009. 11: p. 1441-1452.
    106. Zhu, J., F.M. Uhl, A.B. Morgan, and C.A. Wilkie, Studies on the mechanism by which the formation of nanocomposites enhances thermal stability. Chemistry of Materials, 2001. 13: p. 4649-4654.
    107. Holder, K.M., B.R. Spears, M.E. Huff, M.A. Priolo, E. Harth, and J.C. Grunlan, Stretchable Gas Barrier Achieved with Partially Hydrogen‐Bonded Multilayer Nanocoating. Macromolecular rapid communications, 2014. 35: p. 960-964.
    108. Yun, H., E.S. Lee, M.j. Kim, J.J. Kim, J.H. Lee, H.H. Lee, K.R. Park, J.K. Yi, H.W. Kim, and E.c. Kim, Magnetic nanocomposite scaffold-induced stimulation of migration and odontogenesis of human dental pulp cells through integrin signaling pathways. PloS one, 2015. 10: p. 1-14.
    109. Yun, H.M., S.J. Ahn, K.R. Park, M.J. Kim, J.J. Kim, G.Z. Jin, H.W. Kim, and E.C. Kim, Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation. Biomaterials, 2016. 85: p. 88-98.
    110. Zeng, X., X. Zeng, Hu, Xie, Lan, Wu, Jiang, and Z. Gu, Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation. International Journal of Nanomedicine, 2012. 7: p. 3365–3378.
    111. Gonzalez, G., A. Chiappone, I. Roppolo, E. Fantino, V. Bertana, F. Perrucci, L. Scaltrito, F. Pirri, and M. Sangermano, Development of 3D printable formulations containing CNT with enhanced electrical properties. Polymer, 2017. 109: p. 246-253.
    112. Credi, C., A. Fiorese, M. Tironi, R. Bernasconi, L. Magagnin, M. Levi, and S. Turri, 3D Printing of Cantilever-Type Microstructures by Stereolithography of Ferromagnetic Photopolymers. ACS Appl Mater Interfaces, 2016. 8: p. 26332-26342.
    113. Zhou, X., N.J. Castro, W. Zhu, H. Cui, M. Aliabouzar, K. Sarkar, and L.G. Zhang, Improved human bone marrow mesenchymal stem cell osteogenesis in 3D bioprinted tissue scaffolds with low intensity pulsed ultrasound stimulation. Scientific reports, 2016. 6: p. 1-12.
    114. Leigh, S.J., C. Purssell, J. Bowen, D.A. Hutchins, J.A. Covington, and D. Billson, A miniature flow sensor fabricated by micro-stereolithography employing a magnetite/acrylic nanocomposite resin. Sensors and Actuators A: Physical, 2011. 168: p. 66-71.
    115. Chen, M.H., C.R. Chen, S.H. Hsu, S.P. Sun, and W.F. Su, Low shrinkage light curable nanocomposite for dental restorative material. Dental Materials, 2006. 22: p. 138-145.
    116. Moothanchery, M., I. Naydenova, S. Mintova, and V. Toal, Nanozeolites doped photopolymer layers with reduced shrinkage. Optics Express, 2011. 19: p. 25786-25791.
    117. Beck, G.R., Inorganic phosphate as a signaling molecule in osteoblast differentiation. Journal of cellular biochemistry, 2003. 90: p. 234-243.
    118. Stein, G.S., J.B. Lian, J.L. Stein, A.J. Van Wijnen, and M. Montecino, Transcriptional control of osteoblast growth and differentiation. Physiological reviews, 1996. 76: p. 593-629.
    119. Ang, E.S., X. Yang, H. Chen, Q. Liu, M.H. Zheng, and J. Xu, Naringin abrogates osteoclastogenesis and bone resorption via the inhibition of RANKL‐induced NF‐κB and ERK activation. FEBS letters, 2011. 585: p. 2755-2762.
    120. Dong, Y., B. Wen, Y. Chen, P. Cao, and C. Zhang, Autoclave-free facile approach to the synthesis of highly tunable nanocrystal clusters for magnetic responsive photonic crystals. RSC Advances, 2016. 6: p. 64434-64440.
    121. Zeta-Meter, I., Zeta-Potential: A Complete Course in 5 Minutes. Zeta-Meter Inc, 1997. 765: p. 1-8.
    122. Yang, S., T. Zeng, Y. Li, J. Liu, Q. Chen, J. Zhou, Y. Ye, and B. Tang, Preparation of graphene oxide decorated Fe 3 O 4@ SiO 2 nanocomposites with superior adsorption capacity and SERS detection for organic dyes. Journal of Nanomaterials, 2015. 16: p. 337.
    123. Xu, Y., Y. Zhou, W. Ma, and S. Wang, A fluorescent sensor for zinc detection and removal based on core-shell functionalized Fe3O4@ SiO2 nanoparticles. Journal of Nanomaterials, 2013. 2013: p. 1-7.
    124. Lee, M.H., F.L. Beyer, and E.M. Furst, Synthesis of monodisperse fluorescent core-shell silica particles using a modified Stöber method for imaging individual particles in dense colloidal suspensions. Journal of colloid and interface science, 2005. 288: p. 114-123.
    125. Zhu, J., S. Wei, J. Ryu, L. Sun, Z. Luo, and Z. Guo, Magnetic epoxy resin nanocomposites reinforced with core− shell structured Fe@ FeO nanoparticles: fabrication and property analysis. ACS Applied Materials & Interfaces, 2010. 2: p. 2100-2107.
    126. Kim, J.J., R.K. Singh, S.J. Seo, T.H. Kim, J.H. Kim, E.J. Lee, and H.W. Kim, Magnetic scaffolds of polycaprolactone with functionalized magnetite nanoparticles: physicochemical, mechanical, and biological properties effective for bone regeneration. RSC Advances, 2014. 4: p. 17325-17336.
    127. Pan, Y.H., H.T. Wang, T.L. Wu, K.H. Fan, H.M. Huang, and W.J. Chang, Fabrication of Fe3O4/PLLA composites for use in bone tissue engineering. Polymer Composites, 2017. 38: p. 2881-2888.
    128. Xu, G.C., A.Y. Li, L.D. Zhang, G.S. Wu, X.Y. Yuan, and T. Xie, Synthesis and characterization of silica nanocomposite in situ photopolymerization. Journal of applied polymer science, 2003. 90: p. 837-840.
    129. Singh, R.K., K.D. Patel, J.H. Lee, E.J. Lee, J.H. Kim, T.H. Kim, and H.W. Kim, Potential of magnetic nanofiber scaffolds with mechanical and biological properties applicable for bone regeneration. PloS one, 2014. 9: p. 1-16.
    130. Geiser, V., Y. Leterrier, and J.A.E. Månson, Conversion and shrinkage analysis of acrylated hyperbranched polymer nanocomposites. Journal of applied polymer science, 2009. 114: p. 1954-1963.
    131. Shan, D., Y. Shi, S. Duan, Y. Wei, Q. Cai, and X. Yang, Electrospun magnetic poly (L-lactide)(PLLA) nanofibers by incorporating PLLA-stabilized Fe3O4 nanoparticles. Materials Science and Engineering: C, 2013. 33: p. 3498-3505.
    132. Hughes, S., A.J. El Haj, and J. Dobson, Magnetic micro-and nanoparticle mediated activation of mechanosensitive ion channels. Medical Engineering and Physics, 2005. 27: p. 754-762.
    133. Tenuzzo, B., A. Chionna, E. Panzarini, R. Lanubile, P. Tarantino, B.D. Jeso, M. Dwikat, and L. Dini, Biological effects of 6 mT static magnetic fields: a comparative study in different cell types. Bioelectromagnetics: Journal of the Bioelectromagnetics Society, The Society for Physical Regulation in Biology and Medicine, The European Bioelectromagnetics Association, 2006. 27: p. 560-577.
    134. Rosen, A.D., Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell biochemistry and biophysics, 2003. 39: p. 163-173.
    135. Grassi, C., M. D’Ascenzo, A. Torsello, G. Martinotti, F. Wolf, A. Cittadini, and G.B. Azzena, Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell calcium, 2004. 35: p. 307-315.
    136. De Santis, R., U. D Amora, T. Russo, A. Ronca, A. Gloria, and L. Ambrosio, 3D fibre deposition and stereolithography techniques for the design of multifunctional nanocomposite magnetic scaffolds. Journal of Materials Science: Materials in Medicine, 2015. 26: p. 250.

    無法下載圖示 全文公開日期 2023/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE