簡易檢索 / 詳目顯示

研究生: 游凱龍
Kai-long You
論文名稱: 多功能奈米複合物的合成與其協同性癌症治療方法和螢光生醫顯影應用
Synthesis of multifunctional nanocomposite for the development of cooperative cancer therapy and fluorescence biomedical imaging application
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 黃志清
Chih-Ching Huang
蔡伸隆
Shen-Long Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 106
中文關鍵詞: 碳化鈦多功能奈米複合物協同性癌症治療光動力治療飢餓治療光熱治療
外文關鍵詞: MXene, multifunctional nanocomposite, cooperative cancer therapy, photothermal therapy, starvation therapy, photodymatic therapy
相關次數: 點閱:445下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要藉由化學濕式蝕刻法與超聲輔助來合成碳化鈦(Ti3C2, MXene)奈米基材,將抗壞血酸鈉(Sodium ascorbate, SA)與多巴胺(Dopamine, DA)對MXene主體先進行表面改質修飾,成功合成出DASA- MXene,不但具有良好的穩定性和生物相容性,且表面的抗壞血酸鈉使MXene基材較不容易氧化成二氧化鈦(TiO2) 1。材料鑑定方面由HRTEM、SEM、XRD等儀器來進行奈米材料結構之分析,並使用UV-Vis、FTIR和Zeta potential來進行官能基鑑定確定。
    更進一步將DASA- MXene與葡萄糖氧化酶(Glucose oxidase, GOx)和光敏劑二氫卟吩(Chlorin e6, Ce6)結合,分別賦予其飢餓療法和光動力治療之效果,形成一個新形態的奈米複合物材料。Ce6-GOx-MXene具有良好的光熱轉化效率(45.1%),這是由於MXene基材本身優越之紅外光吸收能力和局部表面電漿共振的特性,可做為光熱材料以及應用於腫瘤治療。經由UV-Vis吸收光譜、雷射激發光以及經過活性氧(reactive oxygen species, ROS)測定確認光動力之效果,並將Ce6-GOx-MXene奈米複合物實際應用於細胞毒性測試、癌細胞協同治療和細胞螢光顯影,確認其治療效果,成功發展出一個同時具有光熱/光動力治療/飢餓療法、細胞螢光顯影之多功能奈米複合物材料,期許在醫學治療上提供了一項新興的藥物材料。


    In this paper, we employed a strategy to prepare titanium carbide (Ti3C2, MXene) nano-substrates using chemical wet etching and ultrasound assistance techniques. During the synthesis, sodium ascorbate (SA) and dopamine (DA) are used to modify the surface of the MXene, resulting DASA-MXene. Because of the SA on its surface, the resulting material, DASA-MXene, has a quality alteration that not only has good stability and biocompatibility, but also makes the MXene substrate less likely to be oxidized to titanium dioxide (TiO2). The morphology of the nano-substrates was studied using HRTEM, SEM, and XRD, while functional group identification was done using UV-Vis, FTIR, and Zeta potential.
    Furthermore, DASA-MXene is combined with glucose oxidase (GOx) and photosensitizer (Chlorin e6, Ce6) to produce a new type of innovative nanocomposite material Ce6-GOx-MXene that integrates the effects of starvation therapy and photodynamic therapy. Therefore, Ce6-GOx-MXene has a good photothermal conversion efficiency (45.1%) under 808 nm laser irradiation due to the superior infrared light absorption capacity of the MXene substrate and the properties of local surface plasma resonance.
    Quantitative measurements show that the multifunctional nanocomposite generates cytotoxic reactive oxygen species when irradiated to a 671 nm laser. Due to the presence of GOx, glucose nutrient was decomposed, result in the formation of gluconic acid and H2O2, leading in cancer cell starvation therapy. In vitro tests show that the Ce6-GOx-MXene nanocomposite is biocompatible and causes considerable cancer cell death when exposed to laser light. Therefore, we developed a multifunctional nanocomposite material that can be used for photothermal/photodynamic therapy/starvation therapy as well as cell fluorescence imaging at the same time. The in vitro findings suggest that multifunctional anticancer agents with higher efficacy could be used in a varous of in vivo applications.

    摘要 致謝 Abstract 總目錄 圖目錄 表目錄 第一章、緒論 1.1前言 1.2研究動機與內容 第二章 理論基礎及文獻回顧 2.1 碳化鈦( MXene)的合成與發展 2.1.1碳化鈦( MXene)之發展歷史 2.2光熱治療發展與原理 2.2.1 光熱治療之溫度概論 2.2.2光熱劑(Photothermal agent)的介紹 2.2.3以MXene為基底之光熱材料與其發展 2.3光動力治療發展與原理 2.3.1光動力治療之發展與原理 2.3.2光敏劑(Photosensitizers, PS)之介紹 2.3.3以二氫卟酚(Chlorin e6, Ce6)為光敏劑之光動力材料的發展與應用 2.4改善缺氧環境與腫瘤飢餓療法(Tumor-Starvation Therapy) 2.4.1 腫瘤環境與飢餓療法 2.4.2 酵素的分類與應用 2.4.3酵素之類型、機制與應用 第三章、實驗儀器與方法 3.1實驗藥品 3.2實驗儀器 3.3 實驗步驟 3.3.1碳化鈦(Ti3C2 , p-MXene)之合成 3.3.2以抗壞血酸鈉官能化碳化鈦(SA-MXene) 3.3.3以多巴胺官能化SA-MXene 3.3.4將葡萄糖氧化酶(Glucose oxidase, GOX)與DASA-MXene結合 3.3.5將二氫卟吩(Chlorin, Ce6)與GOx-MXene結合 3.4 Ce6-GOx-MXene之光熱檢測 3.5 Ce6-GOx-MXene光動力之單態氧(Singlet oxygen species)檢測 3.6以GOx做為酶催化之檢測 3.6.1葡萄糖酸(Gluconic acid)之檢測 3.6.2溶氧量(O2)實驗之檢測 3.6.3過氧化氫(H2O2)實驗之檢測 3.6.4 pH值( pH value)之檢測 3.6.5 檢測Ce6-GOx-MXene中GOx的含量 3.7細胞培養與細胞實驗 3.7.1培養液(medium)與磷酸鹽緩衝液(PBS)之配製 3.7.2解凍細胞(Cells Defrost) 3.7.3繼代培養(Cell Culture) 3.7.4細胞計數(Cell Counting) 3.7.5冷凍細胞(Cell Cryopreservation) 3.7.6 Ce6-GOx-MXene奈米複合材料於細胞體外之材料毒性測試 3.7.7 Ce6-GOx-MXene奈米複合材料於細胞體外之光熱與光動力治療 3.7.8 細胞之細胞體外之光動力檢測螢光顯影試片製作 3.7.9 Ce6-GOx-MXene奈米複合材料於細胞體外之飢餓療法 第四章、結果與討論 4.1 Ce6-GOx-MXene奈米複合物製備與鑑定 4.1.1 Ce6-GOx-MXene奈米複合物製備 4.1.2 Ce6-GOx-MXene奈米複合物鑑定 4.2 Ce6-GOx-MXene奈米複合物之光熱與光動力分析 4.2.1 Ce6-GOx-MXene奈米複合物之光熱分析 4.2.2 Ce6-GOx-MXene奈米複合物之光動力分析 4.3 Ce6-GOx-MXene奈米複合物之酵素催化分析 4.3.1 Ce6-GOx-MXene奈米複合物之酵素催化之檢測 4.3.2 Ce6-GOx-MXene奈米複合物之動力學分析 4.4 Ce6-GOx-MXene奈米複合物於細胞治療之應用 4.4.1 Ce6-GOx-MXene奈米複合物之細胞毒性分析 4.4.2 Ce6-GOx-MXene奈米複合物之光熱/光動力/飢餓協同治療 4.4.3 Ce6-GOx-MXene奈米複合物之細胞顯影應用 第五章、結論與外來展望 5.1結論 5.2 未來展望 第六章、參考文獻

    1. Bankar, S. B.; Bule, M. V.; Singhal, R. S.; Ananthanarayan, L., Glucose oxidase — An overview. Biotechnology Advances 2009, 27 (4), 489-501.
    2. Li, R.; Zhang, L.; Shi, L.; Wang, P., MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS nano 2017, 11 (4), 3752-3759.
    3. Salim, O.; Mahmoud, K.; Pant, K.; Joshi, R., Introduction to MXenes: synthesis and characteristics. Materials Today Chemistry 2019, 14, 100191.
    4. Kumar, S.; Lei, Y.; Alshareef, N. H.; Quevedo-Lopez, M.; Salama, K. N., Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker. Biosensors and Bioelectronics 2018, 121, 243-249.
    5. Roti Roti, J. L., Cellular responses to hyperthermia (40–46 C): Cell killing and molecular events. International Journal of hyperthermia 2008, 24 (1), 3-15.
    6. Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2T x MXene). Chemistry of Materials 2017, 29 (18), 7633-7644.
    7. Maziukiewicz, D.; Grześkowiak, B. F.; Coy, E.; Jurga, S.; Mrówczyński, R., NDs@ PDA@ ICG conjugates for photothermal therapy of glioblastoma multiforme. Biomimetics 2019, 4 (1), 3.
    8. Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H., The cellular and molecular basis of hyperthermia. Critical reviews in oncology/hematology 2002, 43 (1), 33-56.
    9. Xiong, Y.; Sun, F.; Zhang, Y.; Yang, Z.; Liu, P.; Zou, Y.; Yu, Y.; Tong, F.; Yi, C.; Yang, S., Polydopamine-mediated bio-inspired synthesis of copper sulfide nanoparticles for T1-weighted magnetic resonance imaging guided photothermal cancer therapy. Colloids and Surfaces B: Biointerfaces 2019, 173, 607-615.
    10. Xu, M.; Yang, G.; Bi, H.; Xu, J.; Feng, L.; Yang, D.; Sun, Q.; Gai, S.; He, F.; Dai, Y., Combination of CuS and g-C3N4 QDs on upconversion nanoparticles for targeted photothermal and photodynamic cancer therapy. Chemical Engineering Journal 2019, 360, 866-878.
    11. You, Q.; Sun, Q.; Yu, M.; Wang, J.; Wang, S.; Liu, L.; Cheng, Y.; Wang, Y.; Song, Y.; Tan, F., BSA–bioinspired gadolinium hybrid-functionalized hollow gold nanoshells for NIRF/PA/CT/MR quadmodal diagnostic imaging-guided photothermal/photodynamic cancer therapy. ACS applied materials & interfaces 2017, 9 (46), 40017-40030.
    12. Chen, Y.; Wang, L.; Shi, J., Two-dimensional non-carbonaceous materials-enabled efficient photothermal cancer therapy. Nano Today 2016, 11 (3), 292-308.
    13. Jaque, D.; Maestro, L. M.; Del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J.; Rodríguez, E. M.; Solé, J. G., Nanoparticles for photothermal therapies. nanoscale 2014, 6 (16), 9494-9530.
    14. Mendecki, J.; Friedenthal, E.; Botstein, C.; Paglione, R.; Sterzer, F., Microwave applicators for localized hyperthermia treatment of cancer of the prostate. International Journal of Radiation Oncology* Biology* Physics 1980, 6 (11), 1583-1588.
    15. Johannsen, M.; Gneveckow, U.; Eckelt, L.; Feussner, A.; Waldöfner, N.; Scholz, R.; Deger, S.; Wust, P.; Loening, S.; Jordan, A., Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. International journal of hyperthermia 2005, 21 (7), 637-647.
    16. Lepock, J. R.; Cheng, K.-H.; Al-qysi, H.; Sim, I.; Koch, C. J.; Kruuv, J., Hyperthermia-induced inhibition of respiration and mitochondrial protein denaturation in CHL cells. International journal of hyperthermia 1987, 3 (2), 123-132.
    17. Lepock, J. R.; Frey, H. E.; Rodahl, A. M.; Kruuv, J., Thermal analysis of CHL V79 cells using differential scanning calorimetry: implications for hyperthermic cell killing and the heat shock response. Journal of cellular physiology 1988, 137 (1), 14-24.
    18. Caccamo, A. E.; Desenzani, S.; Belloni, L.; Borghetti, A. F.; Bettuzzi, S., Nuclear clusterin accumulation during heat shock response: Implications for cell survival and thermo‐tolerance induction in immortalized and prostate cancer cells. Journal of cellular physiology 2006, 207 (1), 208-219.
    19. Russier, J.; Oudjedi, L.; Piponnier, M.; Bussy, C.; Prato, M.; Kostarelos, K.; Lounis, B.; Bianco, A.; Cognet, L., Direct visualization of carbon nanotube degradation in primary cells by photothermal imaging. Nanoscale 2017, 9 (14), 4642-4645.
    20. Liu, Z.; Yang, K.; Lee, S.-T., Single-walled carbon nanotubes in biomedical imaging. Journal of Materials Chemistry 2011, 21 (3), 586-598.
    21. Zha, Z.; Deng, Z.; Li, Y.; Li, C.; Wang, J.; Wang, S.; Qu, E.; Dai, Z., Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging. Nanoscale 2013, 5 (10), 4462-4467.
    22. Zhang, Y.; Zhang, L.; Wang, Z.; Wang, F.; Kang, L.; Cao, F.; Dong, K.; Ren, J.; Qu, X., Renal-clearable ultrasmall covalent organic framework nanodots as photodynamic agents for effective cancer therapy. Biomaterials 2019, 223, 119462.
    23. Chen, Y.-W.; Su, Y.-L.; Hu, S.-H.; Chen, S.-Y., Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Advanced drug delivery reviews 2016, 105, 190-204.
    24. Yu, X.; Cai, X.; Cui, H.; Lee, S.-W.; Yu, X.-F.; Liu, B., Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale 2017, 9 (45), 17859-17864.
    25. Dougherty, T. J.; Marcus, S. L., Photodynamic therapy. European Journal of Cancer 1992, 28 (10), 1734-1742.
    26. Kessel, D., Photodynamic therapy: from the beginning. Photodiagnosis and Photodynamic Therapy 2004, 1 (1), 3-7.
    27. Shirata, C.; Kaneko, J.; Inagaki, Y.; Kokudo, T.; Sato, M.; Kiritani, S.; Akamatsu, N.; Arita, J.; Sakamoto, Y.; Hasegawa, K., Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress. Scientific reports 2017, 7 (1), 1-8.
    28. Yoon, I.; Li, J. Z.; Shim, Y. K., Advance in photosensitizers and light delivery for photodynamic therapy. Clinical endoscopy 2013, 46 (1), 7.
    29. Calixto, G. M. F.; Bernegossi, J.; De Freitas, L. M.; Fontana, C. R.; Chorilli, M., Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules 2016, 21 (3), 342.
    30. Ai, F.; Ju, Q.; Zhang, X.; Chen, X.; Wang, F.; Zhu, G., A core-shell-shell nanoplatform upconverting near-infrared light at 808 nm for luminescence imaging and photodynamic therapy of cancer. Scientific reports 2015, 5 (1), 1-11.
    31. Dolmans, D. E.; Fukumura, D.; Jain, R. K., Photodynamic therapy for cancer. Nature reviews cancer 2003, 3 (5), 380-387.
    32. Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D., Photodynamic therapy of cancer: an update. CA: a cancer journal for clinicians 2011, 61 (4), 250-281.
    33. Malatesti, N.; Smith, K.; Savoie, H.; Greenman, J.; Boyle, R. W., Synthesis and in vitro investigation of cationic 5, 15-diphenyl porphyrin-monoclonal antibody conjugates as targeted photodynamic sensitisers. International journal of oncology 2006, 28 (6), 1561-1569.
    34. Taquet, J.-p.; Frochot, C.; Manneville, V.; Barberi-Heyob, M., Phthalocyanines covalently bound to biomolecules for a targeted photodynamic therapy. Current medicinal chemistry 2007, 14 (15), 1673-1687.
    35. Sun, S.; Chen, J.; Jiang, K.; Tang, Z.; Wang, Y.; Li, Z.; Liu, C.; Wu, A.; Lin, H., Ce6-modified carbon dots for multimodal-imaging-guided and single-NIR-laser-triggered photothermal/photodynamic synergistic cancer therapy by reduced irradiation power. ACS applied materials & interfaces 2019, 11 (6), 5791-5803.
    36. Zhao, W.; Hu, J.; Gao, W., Glucose oxidase–polymer nanogels for synergistic cancer-starving and oxidation therapy. ACS applied materials & interfaces 2017, 9 (28), 23528-23535.
    37. Gao, S.; Lin, H.; Zhang, H.; Yao, H.; Chen, Y.; Shi, J., Nanocatalytic tumor therapy by biomimetic dual inorganic nanozyme‐catalyzed cascade reaction. Advanced Science 2019, 6 (3), 1801733.
    38. Yang, B.; Ding, L.; Chen, Y.; Shi, J., Augmenting tumor‐starvation therapy by cancer cell autophagy inhibition. Advanced Science 2020, 7 (6), 1902847.
    39. Yang, X.; Yang, Y.; Gao, F.; Wei, J.-J.; Qian, C.-G.; Sun, M.-J., Biomimetic hybrid nanozymes with self-supplied H+ and accelerated O2 generation for enhanced starvation and photodynamic therapy against hypoxic tumors. Nano letters 2019, 19 (7), 4334-4342.
    40. Zhang, Y.; Wang, F.; Liu, C.; Wang, Z.; Kang, L.; Huang, Y.; Dong, K.; Ren, J.; Qu, X., Nanozyme decorated metal–organic frameworks for enhanced photodynamic therapy. ACS nano 2018, 12 (1), 651-661.
    41. Lin, B.; Chen, H.; Liang, D.; Lin, W.; Qi, X.; Liu, H.; Deng, X., Acidic pH and high-H2O2 dual tumor microenvironment-responsive nanocatalytic graphene oxide for cancer selective therapy and recognition. ACS applied materials & interfaces 2019, 11 (12), 11157-11166.
    42. Kamphorst, J. J.; Nofal, M.; Commisso, C.; Hackett, S. R.; Lu, W.; Grabocka, E.; Vander Heiden, M. G.; Miller, G.; Drebin, J. A.; Bar-Sagi, D., Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer research 2015, 75 (3), 544-553.
    43. Han, T.; Kang, D.; Ji, D.; Wang, X.; Zhan, W.; Fu, M.; Xin, H.-B.; Wang, J.-B., How does cancer cell metabolism affect tumor migration and invasion? Cell adhesion & migration 2013, 7 (5), 395-403.
    44. Kato, Y.; Ozawa, S.; Miyamoto, C.; Maehata, Y.; Suzuki, A.; Maeda, T.; Baba, Y., Acidic extracellular microenvironment and cancer. Cancer cell international 2013, 13 (1), 1-8.
    45. Menchón, S. A., Acid-mediated tumor invasion as a function of nutrient source location. Physical Review E 2019, 100 (2), 022417.
    46. White, E., Deconvoluting the context-dependent role for autophagy in cancer. Nature reviews cancer 2012, 12 (6), 401-410.
    47. Galluzzi, L.; Pietrocola, F.; Levine, B.; Kroemer, G., Metabolic control of autophagy. Cell 2014, 159 (6), 1263-1276.
    48. Sahu, A.; Kwon, I.; Tae, G., Improving cancer therapy through the nanomaterials-assisted alleviation of hypoxia. Biomaterials 2020, 228, 119578.
    49. Wang, J.; Hu, Y.; Zhou, Q.; Hu, L.; Fu, W.; Wang, Y., Peroxidase-like activity of metal–organic framework [Cu (PDA)(DMF)] and its application for colorimetric detection of dopamine. ACS applied materials & interfaces 2019, 11 (47), 44466-44473.
    50. Liu, J.; Hu, X.; Hou, S.; Wen, T.; Liu, W.; Zhu, X.; Yin, J.-J.; Wu, X., Au@ Pt core/shell nanorods with peroxidase-and ascorbate oxidase-like activities for improved detection of glucose. Sensors and Actuators B: Chemical 2012, 166, 708-714.
    51. Viswanathan, S.; Li, P.; Choi, W.; Filipek, S.; Balasubramaniam, T.; Renugopalakrishnan, V., Protein–carbon nanotube sensors: single platform integrated micro clinical lab for monitoring blood analytes. Methods in enzymology 2012, 509, 165-194.
    52. Bankar, S. B.; Bule, M. V.; Singhal, R. S.; Ananthanarayan, L., Glucose oxidase—an overview. Biotechnology advances 2009, 27 (4), 489-501.
    53. Dubey, M. K.; Zehra, A.; Aamir, M.; Meena, M.; Ahirwal, L.; Singh, S.; Shukla, S.; Upadhyay, R. S.; Bueno-Mari, R.; Bajpai, V. K., Improvement strategies, cost effective production, and potential applications of fungal glucose oxidase (GOD): current updates. Frontiers in microbiology 2017, 8, 1032.
    54. Han, Y.; Wang, T.; Liu, H.; Zhang, S.; Zhang, H.; Li, M.; Sun, Q.; Li, Z., The release and detection of copper ions from ultrasmall theranostic Cu 2− x Se nanoparticles. Nanoscale 2019, 11 (24), 11819-11829.
    55. Luo, W.; Zhu, C.; Su, S.; Li, D.; He, Y.; Huang, Q.; Fan, C., Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanoparticles. Acs Nano 2010, 4 (12), 7451-7458.
    56. Qi, C.; Cai, S.; Wang, X.; Li, J.; Lian, Z.; Sun, S.; Yang, R.; Wang, C., Enhanced oxidase/peroxidase-like activities of aptamer conjugated MoS 2/PtCu nanocomposites and their biosensing application. RSC advances 2016, 6 (60), 54949-54955.
    57. Hu, X.; Saran, A.; Hou, S.; Wen, T.; Ji, Y.; Liu, W.; Zhang, H.; He, W.; Yin, J.-J.; Wu, X., Au@ PtAg core/shell nanorods: tailoring enzyme-like activities via alloying. RSC advances 2013, 3 (17), 6095-6105.
    58. Vinothkumar, G.; Lalitha, A. I.; Suresh Babu, K., Cerium phosphate–cerium oxide heterogeneous composite Nanozymes with enhanced peroxidase-like biomimetic activity for glucose and hydrogen peroxide sensing. Inorganic chemistry 2018, 58 (1), 349-358.
    59. Yang, P.; Jin, S. Y.; Xu, Q. Z.; Yu, S. H., Decorating PtCo bimetallic alloy nanoparticles on graphene as sensors for glucose detection by catalyzing luminol chemiluminescence. Small 2013, 9 (2), 199-204.
    60. Cai, S.; Qi, C.; Li, Y.; Han, Q.; Yang, R.; Wang, C., PtCo bimetallic nanoparticles with high oxidase-like catalytic activity and their applications for magnetic-enhanced colorimetric biosensing. Journal of Materials Chemistry B 2016, 4 (10), 1869-1877.
    61. He, W.; Cai, J.; Zhang, H.; Zhang, L.; Zhang, X.; Li, J.; Yin, J.-J., Formation of PtCuCo trimetallic nanostructures with enhanced catalytic and enzyme-like activities for biodetection. ACS Applied Nano Materials 2017, 1 (1), 222-231.
    62. Huo, M.; Wang, L.; Chen, Y.; Shi, J., Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nature communications 2017, 8 (1), 1-12.
    63. Song, J.; Wu, B.; Zhou, Z.; Zhu, G.; Liu, Y.; Yang, Z.; Lin, L.; Yu, G.; Zhang, F.; Zhang, G., Double‐layered plasmonic–magnetic vesicles by self‐assembly of Janus amphiphilic gold–iron (II, III) oxide nanoparticles. Angewandte Chemie International Edition 2017, 56 (28), 8110-8114.
    64. Long, N. V.; Ohtaki, M.; Uchida, M.; Jalem, R.; Hirata, H.; Chien, N. D.; Nogami, M., Synthesis and characterization of polyhedral Pt nanoparticles: Their catalytic property, surface attachment, self-aggregation and assembly. Journal of colloid and interface science 2011, 359 (2), 339-350.
    65. Peng, Q.; Guo, J.; Zhang, Q.; Xiang, J.; Liu, B.; Zhou, A.; Liu, R.; Tian, Y., Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. Journal of the American Chemical Society 2014, 136 (11), 4113-4116.
    66. Lee, G. S.; Yun, T.; Kim, H.; Kim, I. H.; Choi, J.; Lee, S. H.; Lee, H. J.; Hwang, H. S.; Kim, J. G.; Kim, D.-w., Mussel Inspired Highly Aligned Ti3C2T x MXene Film with Synergistic Enhancement of Mechanical Strength and Ambient Stability. ACS nano 2020, 14 (9), 11722-11732.
    67. Wu, C.-W.; Unnikrishnan, B.; Chen, I.-W. P.; Harroun, S. G.; Chang, H.-T.; Huang, C.-C., Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Materials 2020, 25, 563-571.
    68. He, T.; Xu, H.; Zhang, Y.; Yi, S.; Cui, R.; Xing, S.; Wei, C.; Lin, J.; Huang, P., Glucose oxidase-instructed traceable self-oxygenation/hyperthermia dually enhanced cancer starvation therapy. Theranostics 2020, 10 (4), 1544.
    69. Hou, G.; Zhang, H.; Xie, G.; Xiao, K.; Wen, L.; Li, S.; Tian, Y.; Jiang, L., Ultratrace detection of glucose with enzyme-functionalized single nanochannels. Journal of Materials Chemistry A 2014, 2 (45), 19131-19135.
    70. Wei, J.; Li, J.; Sun, D.; Li, Q.; Ma, J.; Chen, X.; Zhu, X.; Zheng, N., A novel theranostic nanoplatform based on Pd@ Pt‐PEG‐Ce6 for enhanced photodynamic therapy by modulating tumor hypoxia microenvironment. Advanced Functional Materials 2018, 28 (17), 1706310.
    71. Tian, Q.; Tang, M.; Sun, Y.; Zou, R.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J., Hydrophilic flower‐like CuS superstructures as an efficient 980 nm laser‐driven photothermal agent for ablation of cancer cells. Advanced materials 2011, 23 (31), 3542-3547.
    72. Albiter, E.; Alfaro, S.; Valenzuela, M. A., Photosensitized oxidation of 9, 10-dimethylanthracene on dye-doped silica composites. International Journal of Photoenergy 2012, 2012.
    73. Gomes, A.; Fernandes, E.; Lima, J. L., Fluorescence probes used for detection of reactive oxygen species. Journal of biochemical and biophysical methods 2005, 65 (2-3), 45-80.
    74. Belyad, F.; Karkhanei, A. A.; Raheb, J., Expression, characterization and one step purification of heterologous glucose oxidase gene from Aspergillus niger ATCC 9029 in Pichia pastoris. EuPA open proteomics 2018, 19, 1-5.
    75. Sari, N.; Antepli, E.; Nartop, D.; Yetim, N. K., Polystyrene attached Pt (IV)–azomethine, synthesis and immobilization of glucose oxidase enzyme. International journal of molecular sciences 2012, 13 (9), 11870-11880.
    76. Pathak, J.; Chatterjee, A.; Singh, S. P.; Sinha, R. P., Detection of Reactive Oxygen Species (ROS) in Cyanobacteria Using the Oxidant-sensing Probe 2’, 7’-Dichlorodihydrofluorescein Diacetate (DCFH-DA). Bio-protocol 2017, 7 (17), e2545-e2545.
    77. Liu, Y.; Liu, S.; Wang, Y., TEMPO-based redox-sensitive fluorescent probes and their applications to evaluating intracellular redox status in living cells. Chemistry letters 2009, 38 (6), 588-589.

    無法下載圖示 全文公開日期 2026/10/05 (校內網路)
    全文公開日期 2026/10/05 (校外網路)
    全文公開日期 2026/10/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE