簡易檢索 / 詳目顯示

研究生: 林木盛
Mu-sheng Lin
論文名稱: 無線感測網路在三維度空間之效能評估暨佇列管理機制之研究
A Study on Performance Evaluation in 3D Terrains and Queue Management for Wireless Sensor Networks
指導教授: 呂政修
Jenq-shiou Leu
口試委員: 陳金蓮
Jean-lien Chen
周立德
Li-der Chou
石維寬
Wei-kuan Shih
陳俊良
Jiann-liang Chen
陳省隆
Hsing-lung Chen
方文賢
Wen-hsien Fang
鄭瑞光
Ray-guang Cheng
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 134
中文關鍵詞: 隨機預丟封包偵測接收訊號強度指標無線感測網路無線隨意網路無信標模式信標模式佇列管理三維度空間IEEE 802.15.4IEEE 802.11Durkin’s傳播模型AntSense蟻群最佳化
外文關鍵詞: random early detection (RED), queue management, MANET, IEEE 802.15.4, IEEE 802.11, Durkin’s propagation model, beacon order (BO), AntSense, ant colony optimization (ACO), 3D, RSSI, superframe order (SO), wireless sensor networks (WSNs)
相關次數: 點閱:748下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來由於微型製造技術、通訊技術及電池技術的改進,無線隨意網路及感測網路成為相當熱門的研究題材。微小的無線感測器(sensor)使用電池供電,具有感測環境條件、無線通訊及處理資訊的能力,不但能夠感應及偵測目標物的改變,且可處理收集到的數據,並將處理過後的資料以無線傳輸的方式送到資料收集中心。基於上述感測器的諸多特性,許多提升整個網路傳輸的效能、可靠度及省電機制等研究被提出來。
      本論文的研究內容主要區分為三大部分。首先,在無線、隨意及感測網路(WASN)中,主要探討ZigBee感測器在不同的三維度(3D)地形上的效能評估。本研究提出TABOA(Terrain-Aware Beacon Order Adaptation)模型,依據不同3D地形的無線感測網路環境,動態調整IEEE 802.15.4 超級訊框架構(superframe structure)之信標時間間隔(beacon interval)及活動區間(active portion)的長短以適應網路負載量,並探討結合Durkin’s傳播模型(propagation model),當運作在信標模式(beacon-enabled mode)、無信標模式(non-beacon-enabled mode)下,不同地形、信標時間間隔、節點移動速度及資料量的網路效能評估。模擬結果顯示使用Durkin’s傳播模型更能適用於3D的無線感測網路環境中,本研究的貢獻可提供IEEE 802.15.4在不同三維度空間地形上更接近真實的網路效能評估。
      其次,在三維度空間的無線隨意網路及感測網路中,由於節點位置的移動,通訊品質和節點電量會隨著時間而改變,造成路徑維護較為困難。以多點跳躍方式建立的路徑需不斷地重新建立,導致網路效能諸如延遲時間(delay)與封包遞交率(PDR)顯著地惡化。為改善此問題,本論文提出TBRA (Termites-Based Routing Algorithm,飛蟻路由演算法),結合蟻群最佳化(ant colony optimization)演算法及Durkin’s傳播模型,可應用在三維度空間的IEEE 802.11無線隨意及感測網路中,根據不同的網路條件,如節點電量、訊號強度做選徑的決策。模擬結果顯示使用飛蟻路由演算法能適用於多變化之3D的無線隨意感測網路環境中,適當地選擇並調整參數可得到更好的網路效能。
      最後,本論文探討IEEE 802.15.4無線感測網路中節點佇列的管理機制。隨機預丟封包偵測(Random Early Detection, RED)是一種可以預先偵測及避免發生壅塞之有效方法,它是根據封包在佇列(Queue)中的長度達到某一定程度時便隨機將一些封包預先丟棄,如此可避免網路在達到真正壅塞時而發生癱瘓。在本研究論文中提出一個新的信標次方為主的隨機預丟封包偵測演算法(Beacon Order Based-Random Early Detection),稱為BOB-RED,根據資料封包類別不同,調整IEEE 802.15.4 超級訊框架構之Beacon Order (BO)及Superframe Order (SO),以加強對於不同的資料封包類別與資料負載在發生不同壅塞程度時可以應付的強韌度。模擬結果顯示使用BOB-RED佇列管理機制能相較於DropTail能有效降低端點對端點延遲時間、減少電量損耗。


    Communications technology and improvements in battery technology, mobile ad hoc networks, and wireless sensor networks have become popular research topics in recent years because of the rapid development of micro-electromechanical systems (MEMS) technology. Because tiny wireless sensors use battery power, they can sense environmental conditions, and are capable of wireless communications and processing information. They are not only capable of sensing and detecting changes in the target, but can also manage and process the collected data, and transmit them to a collection center. Based on the features of sensors, several studies have focused on the enhancement of network performance, reliability, and power-saving mechanisms.
    This dissertation mainly includes three works. First, this dissertation focuses on the effect of three-dimensional (3D) terrains on the performance in IEEE 802.15.4 wireless, ad hoc and sensor networks. We propose a TABOA (terrain-aware beacon order adaptation) model to investigate the performance of 3D wireless sensor networks upon different terrains. TABOA adapts the beacon interval and superframe duration to change active period in IEEE 802.15.4 superframe structure according to the intrinsic characters of different terrains and traffic loads. The effects of various terrains, beacon interval, node mobility, and traffic loads in specific 3D terrains based on Durkin’s propagation model are investigated. Several comprehensive studies are presented by comparing the simulations results from the various metrics in beacon-enabled and non-beacon-enabled modes. The simulation results indicate that Durkin’s propagation model can achieve optimal performance in three-dimensional wireless sensor networks. The main contribution is to evaluate the performance of the IEEE 802.15.4 network in various terrains through simulation setups that closely model reality.
    Secondly, it is difficult to establish and maintain optimal routes in a 3D space because node mobility, RSSI, and energy of sensor nodes vary with time. The path must be discovered, established, and maintained continually to achieve a low packet delivery rate and long end-to-end delay. In this dissertation, a new algorithm called TBRA (Termites-Based Routing Algorithm), for use in three-dimensional mobile ad hoc networks (MANETs) and wireless sensor networks (WSNs) is proposed. The TBRA combines ant colony optimization (ACO) algorithm and Durkin’s propagation model to derive an efficient routing scheme for routing strategy in a 3D space. This routing selection strategy can be used for various traffic conditions by measuring and counting the average energy of nodes and RSSI value. The simulation results indicate that TBRA can achieve optimal performance in three-dimensional mobile ad hoc networks and wireless sensor networks when the parameters are suitably adapted.
    In the last part of this dissertation, it focuses on the queue management at the gateway node in IEEE 802.15.4 WSNs. A BOB-RED (beacon order-based random early detection) queue management scheme is proposed. The BOB-RED is a dynamic adaptation scheme based on adjusting beacon interval and superframe duration in the IEEE 802.15.4 MAC superframe with a RED queue management scheme to increase the transmission efficiency of multimedia over WSNs. Simulation results demonstrate that BOB-RED can effectively decrease end-to-end delay and energy consumption compared to the DropTail scheme.

    中文摘要 I Abstract III Acknowledgements V Content VI List of Acronym and Notations VIII List of Figures XI List of Tables XIII Chapter 1. Introduction 1 1.1 Impact of 3D Terrains in WSNs 1 1.2 Queue Management in WSNs 3 1.3 Organization of the Dissertation 5 Chapter 2. Background of the ZigBee Sensor Networks and MANETs 6 2.1 ZigBee Sensor Networks 6 2.1.1 ZigBee Topology 7 2.1.2 IEEE 802.15.4 MAC Superframe Structure 8 2.2 Mobile Ad Hoc Networks 12 2.2.1 MANETs Characteristics 12 2.2.2 Routing in MANETs 13 Chapter 3. Related Work 18 3.1 The Durkin’s Propagation Model 23 3.2 The Digital Elevation Model 28 3.3 AntSense module 30 3.4 Random Early Detection 35 Chapter 4. TABOA Model for 3D ZigBee Sensor Networks 38 4.1 TABOA Model and BO, SO Adapted Scheme 38 4.1.1 TABOA Model 38 4.1.2 BO, SO Adapted Scheme 40 4.2 Performance Evaluation 42 4.2.1 Network Configuration and Assumptions 42 4.2.2 Simulation Results 44 4.3 Summary 59 Chapter 5. Termites Based Routing Algorithm for 3D MANETs 60 5.1 Termites Based Routing Algorithm 61 5.1.1 TBRA Route Discovery 61 5.1.2 TBRA Path Selecting Strategy 63 5.1.3 TBRA Energy Model 67 5.1.4 TBRA RSSI Decision Engine 68 5.1.5 Process of Simulation 69 5.2 Performance Evaluation 72 5.3 Simulation Setup and Results 75 5.3.1 Scenario-1 (mobile nodes) 76 5.3.2 Scenario-2 (static nodes) 82 5.4 Summary 87 Chapter 6. BOB-RED Queue Management for IEEE 802.15.4 WSNs 88 6.1 BOB-RED Queue Management 89 6.1.1 BOB-RED Algorithm 89 6.1.2 Network Configuration and Assumptions 100 6.2 Performance Evaluation 102 6.2.1 Chain Topology 103 6.2.2 Tree Topology 106 6.2.3 Star Topology 107 6.3 Summary 111 Chapter 7. Conclusions and Future Work 112 References 114 Biography 119 Publication List 120

    1. M. G. Arslan, T. Onel, and C. Ersoy, “Effect of 3D topographical surfaces for the performance evaluation of wireless sensor networks,” Personal, Indoor and Mobile Radio Communications, 2008. IEEE 19th International Symposium on PIMRC 2008, vol., no., 15-18 Sep. 2008, pp.1 - 6.
    2. S. Filiposka and D. Trajanov, “Terrain-aware three-dimensional radio-propagation model extension for NS-2”, Simulation, vol. 87, no. 1-2, Jan. 2011, pp. 7 - 23.
    3. Durkin’s propagation model, http://e-tnc.com/etnc/Home/tabid/57/Default.aspx
    4. “PART 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs),” IEEE Std. P802.15.4a/D5, 2006.
    5. ZigBee, http://en.wikipedia.org/wiki/ZigBee
    6. C. Y. Hsu, “Study of routing efficiency, network capacity and internet connectivity in mobile ad hoc access networks”, Ph.D. thesis, 2007.
    7. C. Buratti and R. Verdone, “Performance analysis of IEEE 802.15.4 non beacon-enabled mode," IEEE Transactions on Vehicular Technology, vol.58, no.7, Sep. 2000, pp.3480 - 3493.
    8. C. Buratti, “Performance analysis of IEEE 802.15.4 beacon-enabled mode," IEEE Transactions on Vehicular Technology, vol.59, no.4, May 2010, pp.2031 - 2045.
    9. S. Pollin, M. Ergen, S. Ergen, B. Bougard, L. Der Perre, I. Moerman, A. Bahai, P. Varaiya, and F. Catthoor, “Performance analysis of slotted carrier sense IEEE 802.15.4 medium access layer,” IEEE Transactions on Wireless Communications, vol.7, no.9, Sep. 2008, pp.3359 - 3371.
    10. A. Koubaa, M. Alves, and E. Tovar, “A comprehensive simulation study of slotted CSMA/CA for IEEE 802.15.4 wireless sensor networks,” 2006 IEEE International Workshop on Factory Communication Systems, vol., no., pp.183 - 192.
    11. C. D. Ortiz, J. M. Puig, C. E. Palau, and M. Esteve,“3D wireless sensor network modeling and simulation," Sensor Technologies and Applications, 2007. International Conference on SensorComm 2007, vol., no. 14-20, Oct. 2007, pp.307 - 312.
    12. M. Jain, M. K. Mishra, and M. M. Gore, “Energy aware beaconless geographical routing in three dimensional wireless sensor networks,” Advanced Computing, 2009. First International Conference on ICAC 2009, vol., no., 13-15 Dec. 2009, pp.122 - 128.
    13. G. Babaei, M. Romoozi, and M. Rostmai, “A 3D signal obstruction model for realistic mobility models in mobile ad hoc networks”, IJCSI International Journal of Computer Science Issues, vol. 8, issue 4, no 2, Jul. 2011, pp.168 - 175.
    14. L. F. M. Vieira, M. G. Almiron, and A. A. F. Loureiro, “3D MANETs: link probability, node degree, network coverage and applications,” IEEE Wireless Communications and Networking Conference (WCNC), 2011, vol., no., 28-31 Mar. 2011, pp.2042 - 2047.
    15. L. Song, T. Fevens, and A. E. Abdallah, “Hybrid position-based routing algorithms for 3D mobile ad hoc networks,” Mobile Ad-hoc and Sensor Networks, 2008. The 4th International Conference on MSN 2008, vol., no., 10-12 Dec. 2008, pp.177 - 186.
    16. S. Filiposka and D. Trajanov, “3D simulations for wireless ad hoc networks in grid environment”, Proceedings of Small Systems Simulation Symposium 2010, Niš, Serbia, Feb. 2010, pp.12 - 14.
    17. A. Dzambaski, D. Trajanov, S. Filiposka, and A. Grnarov, “Ad hoc networks simulations with real 3D terrains”, 15th Telecommunications forum (TELFOR) 2007, Serbia, Belgrade, Nov. 20-22, 2007, pp. 95 - 98.
    18. M. Vuckovik, D. Trajanov, and Sonja Filiposka, “Durkin’s propagation model based on triangular irregular network terrain”, ICT Innovations 2010, CCIS 83, Springer Berlin Heidelberg, pp. 333 - 341.
    19. The Network Simulator - NS-2, http://www.isi.edu/nsnam/ns/
    20. Durkin’s propagation model, http://e-tnc.com/etnc/Home/tabid/57/Default.aspx
    21. Edwards, R., Durkin, J., “Computer prediction of service area for VHF mobile radio networks” Proceedings of the IEEE, vol.116, no.9, 1969, pp. 1493 - 1500.
    22. Fresnel zone, http://en.wikipedia.org/wiki/Fresnel_zone
    23. Digital_elevation_model , http://rmmcweb.cr.usgs.gov/elevation/dpi_dem.html
    24. Digital_elevation_model , http://en.wikipedia.org/wiki/Digital_elevation_model
    25. U.S. geological survey national mapping division: part 1 general, standards for digital elevation models
    26. U.S. geological survey national mapping division: part 2 specifications, standards for digital elevation models
    27. 3DEM, http://www.hangsim.com/3dem/
    28. J. Zheng and M. J. Lee, “Will ieee 802.15.4 make ubiquitous networking a reality? a discussion on a potential low power, low bit rate standard,” IEEE Communication Magazine, vol.42, no.6, 2004, pp.140 - 146.
    29. B. G. Lee, K. H. Do, and W. Y. Chung, “WSN based 3D mobile indoor multiple user tracking”, IEEE SENSORS 2009 Conference, pp.1598 - 1603.
    30. B. G. Lee, Y. S. Lee, and W. Y. Chung, “3D navigation real time rssi-based indoor tracking application”, Journal of Ubiquitous Convergence Technology, vol.2, no.2, 2008, pp.67 - 77.
    31. H. Shokrani and S. Jabbehdari, “A survey of ant-based routing algorithms for mobile ad-hoc networks”, 2009 International Conference on Signal Processing Systems, pp. 323 - 329.
    32. A. M. Okazaki and A. A. Frohlich, “AD-ZRP: ant-based routing algorithm for dynamic wireless sensor networks,” 2011 18th International Conference on Telecommunications (ICT), vol., no., 8-11 May 2011, pp.15 - 20.
    33. Z. Liu, M. Z. Kwiatkowska, and C. Constantinou, “A biologically inspired QoS routing algorithm for mobile ad hoc networks”, International Journal of Wireless and Mobile Computing - IJWMC, vol. 4, no. 2, 2005, pp. 426 - 431.
    34. R. Huangl, Z. Chen, and G. Xu, “Energy-aware routing algorithm in WSN using predication-mode”, 2010 International Conference on Communications, Circuits and Systems (ICCCAS), 28-30 Jul. 2010, pp. 103 - 107.
    35. S. Sethi and S. K.Udgata, “The efficient ant routing protocol for MANET”, International Journal on Computer Science and Engineering, vol.2, no.7, 2010, pp. 2414 - 2420.
    36. T. Camilo, C. Carreto, J. Silva and F. Boavida, “An energy-efficient ant-based routing algorithm for wireless sensor networks”, Ant Colony Optimization and Swarm Intelligence, 2006, pp. 49 - 59.
    37. J. Wang, J. Xu, and M. Xiang, “EAQR: an energy-efficient ACO based QoS routing algorithm in wireless sensor networks,” Chinese Journal of Electronics, vol. 18, no. 1, 2009, pp. 113 - 116.
    38. M. Dorigo and G. Di Caro, “The ant colony optimization meta-heuristic”, In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, MacGraw-Hill, New York, 1999.
    39. AntSense module, http://eden.dei.uc.pt/~tandre/antsense/
    40. IEEE Std. 802.11-1999, local and metropolitan area network, specific requirements, part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications, 1999. available from http://standards.ieee.org/getieee802/download/802.11-1999.pdf, 2008.
    41. D. Kandris, P. Tsioumas , A. Tzes, G. Nikolakopoulos, and D. D. Vergados, “Power conservation through energy efficient routing in wireless sensor networks”, Sensors, vol.9, 2009, pp.7320 - 7342.
    42. Wikipedia, http://en.wikipedia.org/wiki/Random_early_detection
    43. K. Y. Wang, S. S. Lee, et al., “Low-mac fec controller for JPEG2000 image transmission over IEEE 802.15.4”, in WCSET 2009: World Congress on Science, Engineering and Technology, Feb. 2009, pp. 168 - 171.
    44. K. Y Wang, S. Y. Lee, et al., “Robust JPEG2000 image transmission over IEEE 802.15.4,” in IEEE International Symposium on Electronic Design, Test and Application, 2008, pp. 253 - 257.
    45. A. Zainaldin, I. Lambadaris, and B. Nandy, “Video over wireless ZigBee networks-multi-channel multi-radio approach”, in Wireless Communications and Mobile Computing Conference, 2008. IWCMC '08. International, Aug. 2008, pp. 882 - 887.
    46. S. Hengstler and H. Aghajan, “WiSNAP: a wireless image sensor network application platform”, in TRIDENTCOM 2006, Mar. 2006.
    47. G. Pekhteryev, Z. Sahinoglu, P. Orlik, and G. Bhatti, “Image transmission over IEEE 802.15.4 and ZigBee networks, in IEEE International Symposium on Circuits and Systems (ISCAS), vol. 4, May 2005, pp. 3539 - 3542.
    48. CMUcam project, http://www.cmucam.org/
    49. S. Floyd and V. Jacobson, “Random early detection gateways for congestion avoidance”, IEEE/ACM Trans. Netw., 1993, vol. 4, pp. 397 - 413.
    50. S. Patel, P. Gupta, and G. Singh, “Performance measure of Drop tail and RED algorithm”, in International Conference on Electronic Computer Technology (ICECT), 2010, pp. 35 - 38
    51. G. Epiphaniou, C. Maple, P. Sant, and M. Reeve, “Affects of queuing mechanisms on RTP traffic: comparative analysis of jitter, end-to-end delay and packet loss,” in ARES '10 International Conference on Availability, Reliability, and Security, 2010, pp. 33 - 40
    52. D. Lin and R. Morris, “Dynamics of random early detection,” in Proceedings of ACM SIGCOMM 97, Cannes, France, 1997, pp. 127 - 137.
    53. M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round-robin,” IEEE/ACM Transaction on Network, 1996, vol. 4, pp.375 - 385.
    54. G. F. Ali Ahammed and R. Banu, “Analyzing the performance of active queue management algorithms,” Int. J. Compututer Networks and Communications, 2010, vol.2, no.2, pp.1 - 19.
    55. N. T. Le, S. W. Choi, and Y. M. Jang, “Approximate queuing analysis for IEEE 802.15.4 sensor network,” in Second International Conference on Ubiquitous and Future Networks (ICUFN), 2010, pp. 193 - 198.
    56. Jelena Mišić, and Vojislav B. Mišić, “Access delay for nodes with finite buffers in IEEE 802.15.4 beacon enabled PAN with uplink transmissions,” Computer Communication Journal, 2005, vol. 28, issue 10, pp.1152 - 1166.
    57. B. Gao, C. He, “An individual beacon order adaptation algorithm for IEEE 802.15.4 networks, Communication Systems, 2008. 11th IEEE Singapore International Conference on ICCS 2008, Nov. 2008, pp. 12 - 16.
    58. J. Jeon, J. W. Lee, J. Y. Ha, and W. H. Kwon, “DCA: duty-cycle adaptation algorithm for IEEE 802.15.4 beacon-enabled networks,” Vehicular Technology Conference, VTC2007-Spring. IEEE 65th, pp. 110 - 113.
    59. L. Kleinrock, Queueing Systems, vol. I, John Wiley, 1976.
    60. J. Zheng and M. J. Lee, “WPAN NS2 simulation module”, http://www-ee.ccny.cuny.edu/zheng/pub

    QR CODE