簡易檢索 / 詳目顯示

研究生: 游御民
Yu-Min Yu
論文名稱: 使用3D電感之除二注入鎖定除頻器設計
Divide-by-2 Injection-Locked Frequency Divider with a 3-dimensional Twisted Inductor
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 張勝良
Sheng-Lyang Jang
黃進芳
Jhin-Fang Huang
徐敬文
Ching-Wen Hsue
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 126
中文關鍵詞: 3D電感注入鎖定除頻器除頻範圍8字形電感互感
外文關鍵詞: 3D Inductor
相關次數: 點閱:258下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在射頻積體電路(RFIC)中,頻率合成器扮演著重要的角色,其內部包含了相位偵測器(PFD)、充電幫浦(CP)、迴路濾波器(LF)、壓控振盪器(VCO)、除頻器(FD)。壓控振盪器需要低相位雜訊來避免相鄰雜訊訊號經由混波轉換的干擾,壓控振盪器的輸出在經由除頻器來達到降頻的工作,因此除頻器必須具有高的操作頻寬與頻率。而此論文主要研究鎖相迴路中的注入鎖定除頻器。

首先,設計一個使用3D八字型電感之寬頻注入鎖定除二除頻器,使用台積電0.18μm CMOS製程,此除頻器使用電感並聯電路之寄生電容作為共振腔,以及使用電容交叉耦合作為負電阻產生震盪。注入主動元件之偏壓及電容交叉耦合對之主動元件閘極偏壓被使用在調整除頻器的自振頻率。將此電路與其他使用八邊形電感之除頻器相比,使用八字形電感之除頻器有較低的EM幅射等級以及較小的EM雜訊接收敏感度。使用3D八字型電感作為共振腔之注入鎖定除頻器在輸入 0dBm時,鎖頻範圍為2.6至10.4 GHz(120%),FOM值為13.6,功耗為8.8mW。

接著,設計一個使用八字型變壓器的除二注入鎖定除頻器,使用台積電0.18 μm BiCMOS製程,此除頻器藉由相同磁場去耦合兩個子電路除頻器。高頻帶及低頻帶(子電路)使用八字型電感並聯電路之寄生電容作為共振腔,以及使用電容交叉耦合作為負電阻產生震盪。注入主動元件之偏壓及電容交叉耦合對之主動元件閘極偏壓被使用在調整除頻器的自振頻率。將此電路與其他使用八邊形電感之除頻器相比,使用絞線變壓器之除頻器有較低的EM幅射等級以及較小的EM雜訊接收敏感度。此注入鎖定除頻器在輸入0dBm時,鎖頻範圍為1.5至10.2 GHz(137.2%)。

最後,設計二個注入鎖定除六除頻器,使用台積電0.18 μm BiCMOS製程,第一個除頻器使用一個低頻除二ILFD疊接一個高頻除三ILFD達到除六的效果,此ILFD在輸入0dBm時,除六的鎖頻範圍為8.4GHz至13.8GH(48.6%),而第二顆除頻器使用 CML (current-mode logic) 除二除頻器疊接使用電容交叉耦合式之除三注入鎖定除頻器所構成;CML 則為在 flip-flop 啟用上緣 clock 輸出切換 到輸入,以致於輸出頻率為輸入的一半;且負載較為小,則有較小的 RC 延遲, 但需要提高電壓來補償下降的迴路增益,做為功耗與延遲之 tradeoff。因此使用 CML 疊接 ILFD,讓直流和交流電流可以更有效使用,此ILFD在輸入0dBm時,除六的鎖頻範圍為 8.5GHz至 10.9GHz(24.7%)


Frequency synthesizer plays an important role of Radio Frequency Integrated circuit(RFIC), its blocks include Phase Frequency Detector (PFD), Charge Pump (CP), Loop Filter (LF),Voltage Controlled Oscillator (VCO), and Frequency Divider (FD). In order to pursue the most important characteristics performance of VCO and Divider, low-power, low phase noise, wide Locking range, this thesis presents the design of HEMT oscillator and Injection-Locked Frequency Dividers (ILFDs).

First, a wide-band divide-by-2 injection-locked frequency divider (ILFD) with a 3-dimensional twisted inductor in the 0.18 μm CMOS process. The ILFD uses an inductor resonator in shunt with parasitic capacitors as the resonator, and it also uses a capacitive cross-coupled pairs to generate negative resistance for start-up oscillation. The gate bias of the capacitive cross-coupled pair is used to tune the free-running ILFD oscillation frequency. As compared to other ILFDs using octagonal inductors, the ILFDs using a twisted inductive coil have low EM radiation level and less sensitive to received EM noise. For the implemented ILFD with a 3D inductor, at the power consumption of 8.8 mW and at the input power of 0 dBm, the locking range is 7.8 GHz from 2.6GHz to 10.4GHz and the figure of merit (FOM) is 13.6.

Next, a divide-by-2 injection-locked frequency divider (ILFD) with a twisted transformer in the 0.18 μm CMOS process. The ILFD consists of two sub-ILFD coupled by the common magnetic field. The high-band and low-band sub-ILFD use an inductor resonator in shunt with parasitic capacitors as the resonator, and they also uses capacitive cross-coupled pairs to generate negative resistance for start-up oscillation. The gate biases of capacitive cross-coupled pairs and injection gates are used to tune the free-running ILFD oscillation frequency. As compared to other ILFDs using octagonal inductors, the ILFDs using a twisted inductive coil have low EM radiation level and less sensitive to received EM noise. At the input power 0 dBm the operation range is 8.7GHz from 1.5GHz to 10.2GHz (137.2%).

Finally, a wide locking range ÷6 ILFD designed in the TSMC 0.18 μm BiCMOS process. The proposed current-reused ILFD is based on a low-frequency ÷2 p-core LC ILFD stacking on a high-frequency ÷3 n-core capacitive cross-coupled LC ILFD and a CMOS divide-by-6 injection-locked frequency divider (ILFD) with a divide-by-2 current-mode logic (CML) stacked on a capacitive cross-coupled oscillator used as an LC divide-by-3 ILFD. The divide-by-6 ILFD composed of two ILFDs has a locking range 5.4GHz from 8.4GHz to 13.8GHz and the other one is 2.4 GHz from 8.5 GHz to 10.9 GHz.

摘要 I Abstract III 誌謝 V Table of Contents VI List of Figures IX List of Tables XVI Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 3 Chapter 2 Principles and Design Considerations of Voltage Controlled Oscillators 5 2.1 Introduction 5 2.2 The Oscillators Theory 7 2.2.1 Feedback Oscillators (Two port) 7 2.2.2 Negative Resistance and Resonator (One port) 9 2.3 Category of Oscillators 12 2.3.1 Ring Oscillator 12 2.3.2 LC-Tank Oscillator 15 2.4 Passive Components Design in VCO 22 2.4.1 Design of MOS Varactor 22 2.4.2 Design of Inductor 24 2.4.3 Design of Transformer 28 2.4.4 Design of Capacitor 31 2.4.5 Design of Resistor 36 2.5 The Basic parameters of VCO 37 2.5.1 RF Center Frequency [Hz] 37 2.5.2 RF Output Signal Power [dBm] 37 2.5.3 Power Dissipation [mW] 37 2.5.4 Harmonic/spurious [dBc] 38 2.5.5 Phase Noise [dBc/Hz] 38 2.5.6 Tuning Range [Hz] 41 2.5.7 Tuning Sensitivity [Hz/V] 42 2.5.8 Quality Factor 43 2.5.9 Figure of Merit 45 Chapter 3 Design of Injection Locked Frequency Divider 46 3.1 Principle of ILFD 47 3.2 Principle of Locking Range 49 Chapter 4 Divide-by-2 Injection-Locked Frequency Dividers with a 3-dimensional twisted Inductor 52 4.1 Introduction 52 4.2 Circuit Design 54 4.3 Measurement and Discussion 57 Chapter 5 Divide-by-2 Injection-Locked Frequency Dividers with Twisted Transformer 62 5.1 Introduction 62 5.2 Circuit Design 64 5.3 Measurement and Discussion 70 Chapter 6 Divide-by-6 Injection-Locked Frequency Divider 79 6.1 Introduction 79 6.2 Circuit Design 84 6.3 Measurement and Discussion 86 Chapter 7 Conclusions 99 References 101

[1]B. Razavi, “RF Microelectronics”, Upper Saddle River, NJ: Prentice Hall, 1998
[2]N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992.
[3]S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
[4]B. Razavi, Design of Analog CMOS Integrated Crcuits, MC Graw Hall,2001.
[5]P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
[6]B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
[7]Y. K. Koutsoyannopoulos, and Y. Papananos, “Systematic analysis and modeling of integrated inductors and transformers in RF IC design,” IEEE Trans. Crcuits and System-II, vol. 47, no. 8, pp. 699-713, 2000.
[8]A. Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, 2001.
[9]H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
[10]A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179−194, Feb. 1998.
[11]J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569−572, 2000.
[12]T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326−336, Mar. 2000.
[13]B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
[14]T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
[15]D. Hauspie, E.-C. Park, and J. Craninckx, “Wide-band VCO with simultaneous switching of frequency band, active core, and varactor size,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1472–1480, Jul. 2007.
[16]J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
[17]J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
[18]Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
[19]J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
[20]H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
[21]H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
[22]M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
[23]H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
[24]R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
[25]P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
[26]H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
[27]W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
[28]H. Wu, “Signal generation and processing in high-frequency/high-speed silicon based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
[29]R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
[30]Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
[31]S.-L. Jang, W.-C. Cheng and C.-W. Hsue, "Wide-locking range divide-by-3 Iniection-locked frequency divider using 6th-order RLC resonator," IEEE Trans. VLSI Syst., vol. 24, no. 7, pp.2598-2602, 2016.
[32]O. Tesson, “High quality monolithic 8-shaped inductors for silicon RF IC design,” in IEEE SiRF, pp. 94-97, Jan. 2008.
[33]N. M. Neihart, D. J. Allstot, M. Miller and P. Rakers, “Twisted inductors for low coupling mixed-signal and RF applications”, in Proc. 2008 of IEEE Custom Integrated Circuits Conference, San Jose, CA, pp. 575-578.
[34]P.-Y. Wang et al., “A low phase-noise class-C VCO using novel 8-shaped transformer, ” in Proc. of ISCAS, pp. 889-889, May, 2015.
[35]W. Zou, X. Zou, D. Ren, K. Zhang, D. Liu, Z. Ren , “2.49-4.91 GHz wideband VCO with optimized 8-shaped inductor,” Electron Lett., vol. 55, 55 – 57, 2019.
[36]C. Durand et al., “Innovative 8-shaped inductors integrated in an advanced BiCMOS technology,” in IEEE SiRF, pp. 81-94, Jan. 2011.
[37]Andrew Poon, Andrew Chen, Hirad Samavati, and S. Simon Wang “Reduction of inductive crosstalk using quadrupole inductors,” IEEE J. of Solid-State Circuits, vol. 44, no. 6, pp. 1756-1764, Jun. 2009.
[38]S.-L. Jang, X.-Y. Hang, and W.–T. Liu, ”Review: capacitive cross-coupled injection-locked frequency dividers,” Analog Integr Circ Sig Process, 88:97–104, 2016.
[39]B. Razavi, "A study of injection locking and pulling in oscillators," IEEE J. Solid-State Circuits, 39(9):1415-1424, Sept. 2004.
[40]M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
[41]S. Lee, S. Jang, and C. Nguyen, “Low-power-consumption wide-locking-range dual-injection-locked 1/2 divider through simultaneous optimization of VCO loaded Q and current,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3161–3168, Oct. 2012.
[42]N. Mahalingam, K. Ma, K. S. Yeo, and W. M. Lim, “Coupled dual LC tanks based ILFD with low injection power and compact size,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 105-107, Feb 2014.
[43]S.-L. Jang, F.-B. Lin, and J.-F. Huang, ” Wide-band divide-by-2 injection-locked frequency divider using MOSFET mixers DC-biased in subthreshold region,” Int. J. Circ Theor App, 43, 2081-2088, 2015.
[44]H. Wu and A. Hajimiri, “A 19 GHz 0.5mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE Int. Solid-State Circuits Conf., pp. 412-413, Feb. 2001.
[45]S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J.-F. Huang," Injection-locked frequency divider using injection mixer DC-biased in sub-threshold," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195, March 2015.
[46]S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang,” LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., pp.560-562, Aug. 2008.
[47]H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, June 1999.
[48]Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006.
[49]S.-L. Jang, W.-C. Cheng and C.-W. Hsue, "Wide-locking range divide-by-3 Iniection-locked frequency divider using 6th-order RLC resonator," IEEE Trans. VLSI Syst., vol. 24, no. 7, pp.2598-2602, 2016.
[50]O. Tesson, “High quality monolithic 8-shaped inductors for silicon RF IC design,” in IEEE SiRF, pp. 94-97, Jan. 2008.
[51]N. M. Neihart, D. J. Allstot, M. Miller and P. Rakers, “Twisted inductors for low coupling mixed-signal and RF applications”, in Proc. 2008 of IEEE Custom Integrated Circuits Conference, San Jose, CA, pp. 575-578.
[52]P.-Y. Wang et al., “A low phase-noise class-C VCO using novel 8-shaped transformer, ” in Proc. of ISCAS, pp. 889-889, May, 2015.
[53]W. Zou, X. Zou, D. Ren, K. Zhang, D. Liu, Z. Ren , “2.49-4.91 GHz wideband VCO with optimized 8-shaped inductor,” Electron Lett., vol. 55, 55 – 57, 2019.
[54]C. Durand et al., “Innovative 8-shaped inductors integrated in an advanced BiCMOS technology,” in IEEE SiRF, pp. 81-94, Jan. 2011.
[55]Andrew Poon, Andrew Chen, Hirad Samavati, and S. Simon Wang “Reduction of inductive crosstalk using quadrupole inductors,” IEEE J. of Solid-State Circuits, vol. 44, no. 6, pp. 1756-1764, Jun. 2009.
[56]Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee, and M.-H. Juang: ‘A wide locking range and low voltage CMOS direct injection locked frequency divider’, IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299–301, May 2006.
[57]L. Wang, T. Zhang, O. Li, M. Yang, Q. Chen, M. Zan, and Y. Guo, “A D-band divide-by-6 injection-locked frequency divider with Lange-coupler feedback architecture in 0.13 µm SiGe HBT,” IEICE Express, vol. 14, No. 17, pp. 1–12, 2017.
[58]C.-C. Chan, T.-H. Lin, and H.-Y. Chang, “A 31.2% locking range K-band divide-by-6 injection-locked frequency divider using 90 nm CMOS technology,” in IEEE MTT-S Int. Microwave Symposium Digest, Phoenix, USA, May 2015.
[59]J.-W. Wu, C.-H. Tu, S.-W. Chen and M.-C. Tu, “Divide-by-six injection-locked frequency divider by employing two down-conversions,” in Proc. of the 10th European Microwave Integrated Circuits Conference (EuMIC), pp. 246–249, Sept. 2015.
[60]C. Hsieh, Y. Hsieh, J. Lin, H. Chen, C. Yang and J. Y. Liu, "Signal generation techniques in CMOS for millimeter-wave and terahertz applications," IEEE Int. Symp. on Circuits and Systems (ISCAS), Sapporo, Japan, 2019, pp. 1-5,
[61]S.-L. Jang and C.-W. Chang, ‘‘A 90nm CMOS LC-tank divide-by-3 injection locked frequency divider with record locking range,’’ IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 229–231, Apr. 2010.
[62]S.–L. Jang, W.-C. Lai, G.-Z. Li, and Y.-W. Chen,” High even-modulus injection-locked frequency dividers,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 12, pp. 5069-5079, Dec. 2019.
[63]S. Hara, Kenichi Okada, and Akira Matsuzawa, “A 9.3MHz to 5.7GHz tunable LC-based VCO using a divide-by-N injection-locked frequency divider,” IEEE Asian Solid-State Circuits Conference, pp.81-84, Nov. 2009.
[64]S. Hara, Kenichi Okada, and Akira Matsuzawa, "A wide-tunable LC-based voltage-controlled oscillator using a divide-by-N injection-locked frequency divider", IEICE Tran. Electronics, vol. E93-C, pp. 763, 2010.
[65]S.-L. Jang, S.-J. Jian, and C.-W. Hsue, ” Frequency tuning hysteresis of a dual-resonance ÷3 cross-coupled injection-locked frequency divider,”IET Microw. Antennas Propag., vol. 12, no.8, pp. 1302-1309, 2018.
[66]S.–L. Jang, W.-C. Lai, G.-Y. Lin, and C. Y. Huang,”Injection-locked frequency divider with a resistively distributed resonator for wide locking range performance,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 2, pp. 505-517, Feb. 2019.
[67]Y. Lin, C. Hsu, C. Lu, and Y. Wang, “A low-power quadrature local oscillator using current-mode-logic ring oscillator and frequency triplers,” IEEE Microw. Wireless Components Lett., vol. 23, no. 12, pp. 650–652, Dec. 2013.
[68]T. Siriburanon, W. Deng, A. Musa, K. Okada, and A. Matsuzawa, “A 13.2% locking-range divide-by-6, 3.1 mW, ILFD using even-harmonic-enhanced direct injection technique for millimeter-wave PLLs, ” IEEE European Solid-State Circuits Conf., 2013, pp. 403-406.
[69]P.-H. Feng, and S.-H. Liu, “A current-reused injection-locked frequency multiplication/division circuit in 40-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1523- 1532, Apr. 2013.
[70]M. Farazian, P. S. Gudem, and L. E. Larson, “A CMOS multi-phase injection-locked frequency divider for V-band operation,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 239–241, Apr. 2009.
[71]F. H. Huang, D. M. Lin, H. P. Wang, W. Y. Chiu, and Y. J. Chan, “20 GHz CMOS injection-locked frequency divider with variable division ratio,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp. 469–472, Jun. 2005
[72]S.–L. Jang, G.-Z. Li, and W.-C. Lai,” Wide locking range RLC-tank balanced-injection divide-by-5 injection-locked frequency dividers based on harmonic mixing,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 3, pp. 894-903, March. 2020.
[73]M. Acar, D. Leenaerts, and B. Nauta, “A wideband CMOS injection locked frequency divider,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., Jun. 2004, pp. 211–214.
[74]L. Wang, et al., “A 0.13-μm HBT divide-by-6 injection-locked frequency divider”, in Proceedings of IEEE Asian Solid-State Circuits Conference, pp. 97-100, Nov. 2011.

QR CODE