簡易檢索 / 詳目顯示

研究生: 廖崇吉
Chung-Chi Liao
論文名稱: 金屬-介電質-金屬結構之表面電漿特性及其在光電子元件上之應用
Properties of coupled surface plasmon polaritons in metal-dielectric-metal structures and their potential application in opto-electronic devices
指導教授: 黃柏仁
Bohr-ran Huang
口試委員: 周賢鎧
Shyan-kay Jou
徐世祥
Shih-Hsiang Hsu
柯文政
W. C. Ke
陳乃權
N. C. Chen
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 88
中文關鍵詞: 表面電漿表面電漿共振生醫感測器色散曲線金屬-介電質-金屬光激螢光強化白光有機發光元件
外文關鍵詞: surface plasmon, surface plasmon resonance, biosensor, dispersion curve, metal-dielectric-metal, photoluminescence enhancement, white color OLED
相關次數: 點閱:316下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本論文中,我們將致力於金屬/介電質/金屬(MDM)結構表面電漿特性的研究及將其實現在光電元件的應用上。首先,我們對MDM結構內的表面電漿電磁場特性進行理論推導與實驗驗證。發現這些表面電漿在特定條件下是可輻射的,且其色散曲線是高度可調的。接下來,我們探討在金屬/有機發光層/金屬(MOM)結構內有機發光層的輻射特性。發現MOM結構樣品的光激螢光強度高於金屬/有機層結構樣品四倍之多,這是因為MOM結構內可輻射表面電漿的競爭,迫使有機層內復合成為非輻射表面電漿子的激子數量減少,而降低了非輻射光子損耗,間接增強MOM樣品的光激螢光強度。此外,我們也發現因為同時激發有機螢光輻射與可輻射表面電漿極化子,且後者的波長更可隨有機層厚度變化而調整,因此得到可調的雙色混合光激螢光。另外,我們也提出一種菱鏡/金屬/介電層/金屬/待測物結構的表面電漿感測器組態。因金屬/介電層/金屬結構內的表面電漿色散曲線可藉由調整介電層厚度而加以控制,故下層金屬感測介面上的表面電漿特性應可藉由與其產生耦合而加以調整。此一調整方法是基於二條非平行的表面電漿色散曲線在交會點形成互斥分裂形勢,而使感測器反射共振頻譜低谷處(dip)半高寬窄化,達到改善靈敏度目的。此外,因為在此結構下將同時激發二種表面電漿共振模態,其中一種的共振條件對待測物的光常數變化非常靈敏,而另一種幾乎不受待測物變化影響,因此其輸出信號可作為一個代表系統擾動造成的量測偏移量的參考信號,藉由二者的差動輸出,即可消除系統干擾因子而得到一個既穩定又真實的響應信號。


In this thesis, the properties of surface plasmon-polaritons (SPPs) in symmetrical metal-dielectric-metal (MDM) structures were investigated and their applications in opto-electronic devices were realized. The numerically obtained dispersion relations are found to be highly tunable by varying the dielectric thickness and to cross the left of air light line, which indicates the SPPs are radiative in specific condition. The emission properties of an organic layer embedded in a metal-organic-metal (MOM) structure were investigated. Because of the competition by the radiative SPW in MOM structure, the population of excitons that recombine to form non-radiative SPW should be reduced. This may account for why the MOM sample photoluminescence peak intensity is about four times that of the single-metal sample. In addition, due to simultaneous excitation of the organic fluorescence emission and the radiative SPPs in MOM sample and the latter emission wavelength is tunable by varying the middle organic layer thickness, the color-tunable mixed photoluminescence form MOM sample were hence achieved. A surface plasmon resonance (SPR) scheme with prism/metal/dielectric/metal/analyte structure was developed. The surface plasma wave (SPW) dispersion curves within the MDM structure can be controlled by tuning the dielectric layer thickness. Therefore, the properties of the SPWs on the sensing surface of the SPR sensor can be tuned by coupling between them. The proposed tuning procedure was based on the tendency for anticrossing formation to occur between two non-parallel dispersion curves, and the reduction in the angular dip widths of the SPR sensors using the proposed procedure was demonstrated both numerically and experimentally. In addition, two surface plasma resonant modes are simultaneously excited in the SPR sensor. One of them is highly sensitive to the change in the optical constant of analyte, while the other is barely influenced by that change and then can be a reference signal to remove any drift caused by mechanical and physical disturbance. Thus, we may obtain a stable, real signal from the differential output between them.

摘要 I Abstract II 誌謝 IV Contents V List of Figure VII Chapter 1.Introduction 1.1 Background 1.2 Motivation 1.3 Review of papers on metal-dielectric-metal surface plasmonic structure 1.4 Objectives and structure of thesis Chapter 2.Surface plasmon polaritons (SPP) 2.1 SPP at the single metal-dielectric interface 2.2 Coupled SPP in metal-dielectric-metal (MDM) structure 2.2.1 SPP dispersion relation in metal-dielectric-metal structure 2.2.2 Odd dispersion curve between zone center and dielectric light line 2.2.3 Experimental demonstration of odd SPP properties 2.3 Summary Chapter 3.Photoluminescence emission from Alq3 organic layer in metal-Alq3-metal plasmonic structure 3.1 Mechanism for the enhancement of PL intensity from organic layer embedded within metal-Alq3-metal structure 3.1.1 Theoretical analysis of dispersion relations 3.1.2 Sample fabrication and measurement setup 3.1.3 measured transmittance and photoluminescence spectra 3.1.4 Summary 3.2 Color-tunable mixed photoluminescence emission from Alq3 organic layer in metal-Alq3-metal surface plasmonic structure 3.2.1 Sample design and preparation 3.2.2 Transmittance, photoluminescence spectra and CIE coordinates 3.2.3 Summary Chapter 4.Design and characterization of a prism-based surface plasmon resonance (SPR) sensor incorporated with metal-dielectric-metal (MDM) structure 4.1 Reduction of angular dip width of SPR sensor by coupling surface plasma waves on sensing surface and inside metal-dielectric-metal structure 4.1.1 SPR device analysis 4.1.2 MDM SPR sensor fabrication and measurement setup 4.1.3 Angle-dependent reflectance spectra 4.1.4 Summary 4.2 Self-corrected sensing based on dual SPR modes for disturbance-free detection 4.2.1 Theoretical analysis of SPR modes excited in the MDM SPR structure 4.2.2 MDM SPR sensor fabrication 4.2.3 Response in the reflective intensity measurement 4.2.4 Summary Chapter 5.Conclusion and future research 5.1 Conclusion 5.2 Future research Reference

1.E. M. Purcell, Phys. Rev. 69, 681–681 (1946).
2.I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, Phys. Rev. B 60, 11564–11567 (1999).
3.V. K. Komarala, W. H. Guo, and M. Xiao, J. Appl. Phys. 107, 014309 (2010).
4.Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, Phys. Rev. B 78, 153111 (2008).
5.K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater. 3, 601–605 (2004).
6.C. Bonnand, J. Bellessa, C. Symonds, and J. C. Plenet, Appl. Phys. Lett. 89, 231119 (2006).
7.S. Gianordoli, R. Hainberger, A. K€ock, N. Finger, E. Gornik, C. Hanke, and L. Korte, Appl. Phys. Lett. 77, 2295–2297 (2000).
8.K. Okamoto, I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai, Y. Kawakami, and A. Scherer, Phys. Status Solidi A 204, 2103–2107 (2007).
9.Z. Wang, Z. Chen, Z. Lan, X. Zhai, W. Du, and Q. Gong, Appl. Phys. Lett. 90, 151119 (2007).
10.D. K. Gifford and D. G. Hall, Appl. Phys. Lett. 80, 3679–3681 (2002).
11.C. W. Lai, J. An, and H. C. Ong, Appl. Phys. Lett. 86, 251105 (2005).
12.K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, Appl. Phys. Lett. 87, 071102 (2005).
13.J. Homola, Anal. Bioanal. Chem. 377, 528 (2003).
14.W. C. Kuo, C. Chou, and H. T. Wu, Opt. Lett. 28, 1329 (2003).
15.Y. C. Li, Y. F. Chang, L. C. Su, and C. Chou, Anal. Chem. 80, 5590 (2008).
16.G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, Sens. Actuators B 74, 145 (2001).
17.J. Dostalek, A. Kasry, and W. Knoll, Plasmonics 2, 97 (2007).
18.X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, and R. Zhang, Sens. Actuators A 157, 9 (2010).
19.Y. Wan, Z. Zheng, Zhiting Lu, J. Liu, and Z. Zhu, Sens. Actuators B 162, 35 (2012).
20.E. N. Economou, Phys. Rev. 182, 539–554 (1969).
21.S. L. McCarthy and J. Lambe, Appl. Phys. Lett. 30, 427–429 (1977).
22.S. Ushioda, J. E. Rutledge, and R. M. Pierce, Phys. Rev. Lett. 54, 224–227 (1985).
23.P. D. Sparks, T. Sjodin, B. W. Reed, and J. Stege, Phys. Rev. Lett. 68, 2668–2672 (1992).
24.G. J. Kovacs and G. D. Scott, Phys. Rev. B 16, 1297–1312 (1977).
25.K. R. Welford and J. R. Sambles, J. Mod. Opt. 35, 1467–1483 (1988).
26.P. Tournois and V. Laude, Opt. Commun. 137, 41–45 (1997).
27.L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, J. Mod. Opt. 55, 2929–2943 (2008).
28.P. T. Wu, M. C. Wu, and C. M. Wu, J. Appl. Phys. 107, 083111 (2010).
29.M. J. Preiner, K. T. Shimizu, J. S. White, and N. A. Melosh, Appl. Phys. Lett. 92, 113109 (2008).
30.M. Yoshida, S. Tomita, H. Yanagi, and S. Hayashi, Phys. Rev. B 82, 045410 (2010).
31.Y. Wang, Appl. Phys. Lett. 82, 4385–4387 (2003).
32.K. Gurel, B. Kaplan, H. Guner, M. Bayindir, and A. Dana, Appl. Phys. Lett. 94, 233102 (2009).
33.R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, J. Opt. Soc. Am. A 21, 2442 (2004).
34.J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, Phys. Rev. B 72, 075405 (2005).
35.H. T. Miyazaki and Y. Kurokawa, Phys. Rev. Lett. 96, 097401 (2006).
36.Y. Kurokawa and H. T. Miyazaki, Phys. Rev. B 75, 035411 (2007).
37.Y. Gong and J. Vuckovic, Appl. Phys. Lett. 90, 033113 (2007).
38.X. Guo and Q. Dong, J. Appl. Phys. 108, 113108 (2010).
39.H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316, 430–432 (2007).
40.D. Woolf, M. Loncar, and F. Capasso, Opt. Express 17, 19996–20011 (2009).
41.Y. Zeng, J. Liu, and D. H. Werner, Opt. Express 19, 20035–20047 (2011).
42.F. Villa, T. Lopez-Rios, and L. E. Regalado, Phys. Rev. B 63, 165103 (2001).
43.M. A. Gilmore and B. L. Johnson, J. Appl. Phys. 93, 4497–4504 (2003).
44.H. Shin, M. F. Yanik, S. Fan, R. Zia, and M. L. Brongersma, Appl. Phys. Lett. 84, 4421–4423 (2004).
45.M. W. Tsai, C. Y. Chen, Y. W. Jiang, Y. H. Ye, H. Y. Chang, T. H. Chuang, and S. C. Lee, Appl. Phys. Lett. 91, 213104 (2007).
46.C. M. Wang, Y. C. Chang, M. W. Tsai, Y. H. Ye, C. Y. Chen, Y. W. Jiang, Y. T. Chang, S. C. Lee, and D. P. Tsai, Opt. Express 15, 14673–14678 (2007).
47.Y. H. Ye, Y. W. Jiang, M. W. Tsai, Y. T. Chang, C. Y. Chen, D. C. Tzuang, Y. T. Wu, and S. C. Lee, Appl. Phys. Lett. 93, 263106 (2008).
48.Y. H. Ye, Y. W. Jiang, M. W. Tsai, Y. T. Chang, C. Y. Chen, D. C. Tzuang, Y. T. Wu, and S. C. Lee, Appl. Phys. Lett. 93, 033113 (2008).
49.Y. Liu and J. Kim, Sens. Actuators B 148, 23 (2010).
50.Dong-Jin Lee, Hae-Dong Yim, Seung-Gol Lee, and Beom-Hoan O, Opt. Express 19, 19895–19900 (2011).
51.Youqiao Ma, Gerald Farrell, Yuliya Semenova, Qiang Wu, Infr. Phys. & Tech. 55, 389–394 (2012).
52.H. Raether, Surface Plasmons: On Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988).
53.I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, Phys. Rev. B 60, 11564–11567 (1999).
54.V. K. Komarala, W. H. Guo, and M. Xiao, J. Appl. Phys. 107, 014309 (2010).
55.Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, Phys. Rev. B 78, 153111 (2008).
56.P. Tournois and V. Laude, Opt. Commun. 137, 41–45 (1997)
57.N. C. Chen, W. C. Lien, C. R. Liu, Y. L. Huang, Y. R. Lin, C. Chou, S. Y. Chang, and C. W. Ho, J. Appl. Phys. 109, 043104 (2011).
58.L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, J. Mod. Opt. 55, 2929–2943 (2008)
59.K. Hong, J. L. Lee, Electron. Mater. Lett. 7, 77 (2011).
60.S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, W. Brutting, J. Appl. Phys. 104, 123109 (2008).
61.I. Gontijo, M. Boroditsky, E. Yablonovitch, Phys. Rev. B 60, 11564 (1999).
62.Y. C. Jun, R. D. Kekatpure, J. S. White, M. L. Brongersma, Phys. Rev. B 78, 15311 (2008).
63.S. Gianordoli, R. Hainberger, A. Kock, N. Finger, E. Gornik, C. Hanke, L. Korte, Appl. Phys. Lett. 77, 2295 (2000).
64.S. Wedge, I. R. Hooper, I. Sage, W. L. Barnes, Phys. Rev. B 69, 245418 (2004).
65.J. Feng, T. Okamoto, S. Kawata, Opt. Lett. 30, 2302 (2005).
66.D. K. Gifford, D. G. Hall, Appl. Phys. Lett. 81, 4315 (2002).
67.Y. C. Chen, C. Y. Gao, K. L. Chen, C. J. Huang, Appl. Surf. Sci. 295, 266 (2014).
68.H. H. Cho, B. Park, H. J. Kim, S. Jeon, J. H. Jeong, J. J. Kim, Appl. Opt. 49, 4024 (2010).
69.H. H. Cho, B. Park, H. J. Kim, J. Shim, S. Jeon, J. H. Jeong, J. J. Kim, Curr. Appl. Phys. 10, 139 (2010).
70.N. C. Chen, C. Y. Lu, Y. L. Huang, C. C. Liao, W. C. Ke, B. R. Huang, J. Appl. Phys. 112, 033111 (2012).
71.J. Feng, T. Okamoto, J. Simonen, S. Kawata, Appl. Phys. Lett. 90, 081106 (2007).
72.J. S. Q. Liu, M. L. Brongersma, Appl. Phys. Lett. 90, 091116 (2007).
73.S. Hayashi, A. Maekawa, S. C. Kim, M. Fujii, Phys. Rev. B 82, 035441 (2010).
74.B. R. Huang , C. C. Liao , C. Y. Lu , W. C. Ke, Y. L. Huang, N. C. Chen, J. Vac. Sci. Technol. A 31, 06F104 (2013).
75.See http://refractiveindex.info.
76.V. K. Komarala, W. H. Guo, M. Xiao, J. Appl. Phys. 107, 014309 (2010).
77.K. Gurel, B. Kaplan, H. Guner, M. Bayindir, A. Dana, Appl. Phys. Lett. 94, 233102 (2009).
78.M. Yoshida, S. Tomita, H. Yanagi, S. Hayashi, Phys. Rev. B 82, 045410 (2010).
79.M. X. Wang, Y. W. Zhang, H. W. Cheng, C. X. Sun, Appl. Surf. Sci. 173, 362 (2001).
80.K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, Nat. Mater. 3, 601(2004).
81.K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, Y. Kawakami, Appl. Phys. Lett. 87, 071102 (2005).
82.T. N. Xu, L. Hu, S. Q. Jin, B. P. Zhang, X. K. Cai, H. Z. Wu, C. H. Sui, Appl. Surf. Sci. 258, 5886 (2012).
83.B. W. D’ Andrade, and S. R. Forrest, Adv. Mater. 16(18), 1585 (2004).
84.S. Hayashi, A. Maekawa, S. C. Kim, M. Fujii, Phys. Rev. B 82, 035441 (2010).
85.J. S. Q. Liu, M. L. Brongersma, Appl. Phys. Lett. 90, 091116 (2007).
86.P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
87.X. Fan, I.M. White, S.I. Shopova, H. Zhu, J.D. Suter and Y. Sun, Anal. Chim. Acta 620, 8 (2008).
88.S. Scarano, M. Mascini, A.P.F. Turner and M. Minunni, Biosens. Bioelectron. 25, 957 (2010).
89.Z. Salamon and G. Tollin, Biophys. J. 80, 1557 (2001).
90.R. Slavik, J. Homola, J. Ctyroky and E. Brynda, Sens. Actuators B 74, 106 (2001).
91.G.G. Nenninger, P. Tobiska, J. Homola and S.S. Yee, Sens. Actuators B 74, 145 (2001).
92.J. Dostalek, A. Kasry and W. Knoll, Plasmonics 2, 97 (2007).
93.X. Ma, X. Xu, Z. Zheng, K. Wang, Y. Su, J. Fan, and R. Zhang, Sens. Actuators A 157, 9 (2010).
94.Y. Wan, Z. Zheng, Zhiting Lu, J. Liu and Z. Zhu, Sens. Actuators B 162, 35 (2012).
95.C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin and C. K. Lee, Sens. Actuators B 113, 169 (2006).
96.M. Skorobogatiy and A.V. Kabashin, Appl. Phys. Lett. 89, 143518 (2006).
97.F.C. Chien and S. J. Chen, Biosens. Bioelectron. 20, 633 (2004).
98.L.H. Smith, M.C. Taylor, I.R. Hooper and W.L. Barnes, J. Mod. Opt. 55, 2929 (2008).
99.P. T. Wu, M. C. Wu and C. M. Wu, J. Appl. Phys. 107, 083111 (2010).
100.M.J. Preiner, K.T. Shimizu, J.S. White and N.A. Melosh, Appl. Phys. Lett. 92, 113109 (2008).
101.K. Gurel, B. Kaplan, H. Guner, M. Bayindir and A. Dana, Appl. Phys. Lett. 94, 233102 (2009).
102.Y. Kurokawa and H.T. Miyazaki, Phys. Rev. B 75, 035411 (2007).
103.K.T. Shimizu, R.A. Pala, J.D. Fabbri, M.L. Brongersma and N.A. Melosh, Nano Lett. 6, 2797 (2006).
104.N. C. Chen, C. Y. Lu and Y. L. Huang, C. C. Liao, W. C. Ke and B. R. Huang, J. Appl. Phys. 112, 033111 (2012).
105.H. Shin, M.F. Yanik, S. Fan, R. Zia and M.L. Brongersma, Appl. Phys. Lett. 84, 4421 (2004).
106.Y. Liu, J. Kim, Sens. Actuators B 148, 23 (2010).
107.http://refractiveindex.info
108.P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
109.J. Bellessa, C. Bonnand, J. C. Plenet and J. Mugnier, Phys. Rev. Lett. 93, 036404 (2004).
110.C. Bonnand, J. Bellessa and J. C. Plenet, Appl. Phys. Lett. 89, 231119 (2006).
111.H. Raether, Surface plasmons: on smooth and rough surfaces and on gratings (Springer, Berlin, 1988).
112.J. Guo, P.D.Keathley, J.T.Hastings, Opt. Lett. 33:512-514 (2008).
113.J.T. Hastings, J. Guo, P.D. Keathley, P.B. Kumaresh, Y. Wei, S. Law, L.G. Bachas, Opt. Express 15, 17661–17672 (2007).
114.R. Slavik, J. Homola, H. Vaisocherova, Meas. Sci.Technol. 17, 932-938 (2006).
115.J. Dostalek, H. Vaisocherov, J. Homola, Sens. Actuat. B: Chem. 108, 758-764 (2005).
116.J. Homola, H.B. Lu, G.G. Nenninger, J. Dostalek, S.S. Yee, Sens. Actuat. B: Chem. 76, 403-410(2001).
117.J. J. Burke, G. I. Stegeman, and T. Tamir, Phys. Rev. B 33, 5186 (1986).
118.R. Donipudi, S. Pochiraju, and J. T. Hastings, Proceedings of the 2006 Conference on Lasers and Electrooptics.
119.G. G. Nenninger, J. B. Clendenning, C. E. Furlong, and S. S. Yee, Sens. Actuators B 51, 38-45(1998).
120.C. Boozer, Q. M. Yu, S. F. Chen, C. Y. Lee, J. Homola, S. S. Yee, and S. Y. Jiang, Sens. Actuators B 90, 22-30 (2003).
121.J. Homola, H. B. Lu, and S. S. Yee, Electron. Lett. 35, 1105-1106 (1999).
122.J. Homola, Anal. Bioanal. Chem. 377, 528- 539 (2003).
123.Bohr-Ran Huang, Chung-Chi Liao, Chun-Yi Lu, Wen-Cheng Ke, Yi-Lun Huang, and Nai-Chuan Chen, J. Vac. Sci. Technol. A 31(6) (2013).
124.P. B. Johnson and R. W. Christy, Phys Rev B 6, 4370-4379 (1972).

無法下載圖示 全文公開日期 2019/07/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE