簡易檢索 / 詳目顯示

研究生: 游佳穎
Jia-Ying You
論文名稱: 土石流模擬條件研究- 以豐丘村賀伯颱風為例
A Study on the Conditions of Mudflow Simulation in an Example of Foun-Qiu Village under Typhoon Herb
指導教授: 李咸亨
Hsien-heng Lee
口試委員: 詹錢登
Chyan-deng Jan
馮正一
Zheng-yi Feng
林宏達
Horn-da Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 131
中文關鍵詞: 豐丘土石流神木村初始黏滯係數入流率數值模擬
外文關鍵詞: Feng Qiu mudflow, Shen Mu village, Initial Viscosity, Inflow rate, Numerical Simulation
相關次數: 點閱:170下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以模擬分析民國85年賀伯颱風在南投縣信義鄉豐丘村之土石流致災現象為主,然後以民國98年莫拉克颱風度對南投縣信義鄉神木村造成的土石流災害為輔,探討影響土石流行為的重要因子如初始黏滯係數和入流率;田野調查之土石流到達時間以及災後航照圖則做為模擬成果之驗證資料,期以建立未來類似土石流的致災行為之模擬預測。
    由流變盒試驗得到之本研究黏滯係數值,皆符合前人對土石流的研究成果。在豐丘村案例中,本文之數值模擬分析發現,當LI=1.0,初始黏滯係數為0.25Pa∙s,且入流率111.11m^3/s時,流到堆積區的時間為10.2分鐘,與田野調查的10分鐘到達時間相同。神木村案例為LI=1.0,初始黏滯係數為0.018Pa∙s,且入流率100m^3/s時,流經神木國小的時間為5.7分鐘,與田野調查的5分鐘結果也是接近的。因此,本研究建議將黏滯係數與入流率視為影響土石流的關鍵因子。


    The main simulation study on the mudflow in Feng Qiu Village, Nan-Tou County, under Typhoon Herb at 1996 is employed in this research. Another mudflow in Shen Mu Village under Typhoon Morakot at 2009 is also used to confirm those influence factors, such as initial viscosity and inflow rate, in a simulation analysis. The arriving time of mudflow obtained through fieldwork and aerial photograph after disaster were adopted to examine the numerical simulation results. It is expected to build up key parameters for simulations of similar mudflows in the future.
    The viscosity values obtained through Flow Box Test in this study are all compatible to the previous researches. In the Feng Qiu Village case, when LI is 1.0, initial viscosity is 0.25Pa∙s, and in-flow rate is 111.11m^3/s, the arriving time to the accumulation area is 10.2 minutes, which is similar to 10 minutes obtained from fieldwork. In Shen Mu Village case, when LI is 1.0, initial viscosity is 0.018Pa∙s, and in-flow rate is 100m^3/s, the arriving time to the accumulation area is 5.7 minutes, which is also similar to 5 minutes obtained from fieldwork. Therefore, the recommendation in this study is that the viscosity and in-flow rate are two major important influence factors to a mud flow.

    論文摘要..................................................I ABSTRACT.................................................II 致謝.....................................................IV 目錄.....................................................V 表目錄...................................................IX 圖目錄...................................................XI 符號說明.................................................XV 第一章 緒論..............................................1 1.1前言..................................................1 1.2 研究動機.............................................2 1.3 研究內容與流程.......................................3 第二章 文獻回顧..........................................4 2.1土石流的定義..........................................4 2.2土石流分類............................................6 2.3土石流發生基本條件.....................................11 2.4土石流型為特徵........................................13 2.5土石流相關參數 ........................................14 2.5.1 土石流降伏應力與黏滯係數............................14 2.5.2 土石流濃度.........................................15 2.5.3 土石流流量與規模...................................16 2.5.4 土石流形成之臨界含水量..............................20 2.6 流變模式.............................................22 2.6.1牛頓流體流變模式 (Newtonian fluid model).............23 2.6.2非牛頓流體流變模式 (Non-Newtonian fluid model).......24 2.7土石流流變試驗 ........................................27 2.7.1 管式流變計 (Capillary Rheometer)...................28 2.7.2 旋轉式流變計 (Rotational Rheometer) ................29 2.7.3 移動球流變計 (Moving Ball Rheometer)...............29 2.7.4 Stress Rheometer 5流變計...........................30 2.7.5 流體盒試驗(Flow Box Test)..........................30 第三章 流變方程式探討....................................32 3.1 流變盒試驗法..........................................32 3.1.1 流變盒試驗控制方程式................................33 3.1.2 Flow Box Test數據分析流程..........................36 3.2 FLO-2D介紹..........................................38 3.2.1 FLO-2D程式假設與限制...............................38 3.2.2 控制方程式.........................................39 3.2.3 FLO-2D流變方程式...................................41 3.2.4 FLO-2D模擬所需資料................................ 44 3.3 研究區域介紹........................................ 46 3.1.1 地理概況..........................................47 3.1.2颱風雨量資料.......................................48 3.4 本研究FLO-2D分析參數選定............................ 48 3.3.1圖層輸入.......................................... 48 3.3.2 FLO-2D參數設定....................................49 3.3.3 入流率設定........................................50 3.3.4崩塌區與堆積區選擇..................................50 第四章 結果及探討........................................51 4.1 Flow Box Test 成果分析............................ 51 4.1.1 豐丘村與神木村初始黏滯係數成果..................... 51 4.1.2 豐丘村、神木村和貓空之比較..........................52 4.1.3 與印尼地區之比較...................................52 4.2 豐丘村成果探討.......................................53 4.2.1參數分析1:以不同液性指數(LI )及黏滯係數(η)探討.......53 4.2.2參數分析2:以入流率(qinflow)探討.................... 53 4.2.3 賀伯颱風災況分析...................................54 4.2.4賀伯颱風土石流起始點檢討............................ 57 4.3 神木村成果探討.......................................57 4.3.1參數分析1:以不同液性指數(LI )及黏滯係數(η)探討.......57 4.3.2參數分析2:以入流率(qinflow)探討....................58 4.3.3以田野調查資料驗證分析結果(到達時間).................58 第五章 結論與建議......................................60 5.1結論............................................... 60 5.2 建議...............................................62 參考文獻...............................................64

    1. 水土保持局,土石流防災資訊網,土石流潛勢溪流統計,取自http://246.swcb.gov.tw/debrisClassInfo/potential/potential4.aspx,於104年2月04日公開。
    2. 日本建設省河川局砂防部砂防課,「土石流危險溪流土石流危險區域調查要領」(1989)。
    3. 行政院農業委員會水土保持局,「水土保持技術規範」(2000b)。
    4. 行政院農業委員會水土保持局,「水土保持手冊」,中華水土保持 學會 (2005)。
    5. 李咸亨、黃建智、黃金華、陳俊元,「非扇形土石流指標及其災害評估」,中華水土保持學報,第38卷(2) (2007)。
    6. 李錫堤,「從地型學的觀點觀看陳有蘭溪的賀伯風災」,地工技術,第57期,第17-24頁 (1996)。
    7. 何春蓀,「普通地質學」,國立編譯館,(1984 修訂出版)。
    8. 杜勻、蔡佐良、王建貿,「以Stoke 理論量測新拌混凝土之流變性」,The 6th National Conference on Structural Engineering,Kenting,Taiwan,第26-28 頁 (2002)。
    9. 余昌益,「高含砂水流流變參數之試驗研究」,碩士論文,國立成功大學水利及海洋工程研究所 (1997)。
    10. 周必凡、李德基、羅德富、呂儒仁、楊慶溪,「泥石流防治指南」,科技圖書股份有限公司,科學出版社,北京 (1991)。
    11. 林基源、楊明德、徐松圻、蔡佩勳、許世宗、賴俊仁、賴銘峰、壽克堅、黃富國、陳廣祥、許尚逸,「陳有蘭溪流域坡地災害致災成因探討」,地工技術,第122期 (2009)。
    12. 林柏翰,「長石型高嶺土流變參數與泥質土石流之關係研究」,碩士論文,國立台灣科技大學營建工程系,台北 (2009)。
    13. 姚俊煌,「泥流型土石流之流變參數研究」,碩士論文,國立台灣科技大學營建工程系,台北 (2007)。
    14. 張瑞津、沈淑敏、劉盈劭,「陳有蘭溪四個小流域崩塌與土石流發生頻率之研究」,師大地理研究報告,第34期 (2001)。
    15. 曹家文,「豐丘與神木土石流之回饋分析與參數探討」,碩士論文,國立台灣科技大學營建工程系 (2013)。
    16. 黃建智,「埔里型土石流之研究」,碩士論文,國立暨南國際大學土木工程研究所 (2003)。
    17. 費祥俊,「漿體與粒狀物料運輸水力學」,清華大學出版社,北京 (1994)。
    18. 詹錢登、陳晉琪,「應用直立旋轉式水槽研究土石流體之流動現象」,中華水土保持學報,第28 卷(2),第157-164 頁 (1997)。
    19. 詹錢登、王志賢,「應用管式流變計分析阿公店水庫淤泥之流變特性」,第九屆水利工程研討會,中壢,第E141-E149 頁 (1998)。
    20. 詹錢登,「土石流概論」,科技圖書股份有限公司,台北 (2000)。
    21. 蔡元芳,「土石流扇狀地形狀特性之研究」,博士論文,國立成功大學水利及海洋工程研究所 (1999)。
    22. 維亞洛夫,「土力學的流變原理」,杜余培、郭見揚 譯,科學出版社,北京,第116-140頁 (1978)。
    23. 謝正倫,「桃芝颱風災區土石流災害潛勢分析結果報告書」,行政院農委會水土保持局 (2001)。
    24. Bovis, M.J.and Jakob, M., "The role of debris supply conditions in predicting debris flow activity," Earth Surface Processes and Landforms, Vol.24, pp.1039-1054 (1999).
    25. Bingham,E.C., "Fluid and Plasticity," McGraw-Hill, New York (1922).
    26. Bagnold, R.A., "Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear," Proceeding Royal Society of London, series A, No.225, pp. 49-63 (1954).
    27. Budijanto Widjaja , "Deriving Viscosity by Interpreting the Displacement Profile for Describing Mudflow Behavior," Doctor Thesis, Nation Taiwan University of Science and Technology, Taiwan (2012).
    28. Chen, C.L., "General solutions for viscoplastic debris flow," J. Hydraulic Engineering, 114(3), pp. 259-282 (1988).
    29. Denn, M.M. and Bonn, D., "Issues in the flow of yield-stress liquids," Rheol Acta, 50(4), pp. 307-315 (2010)
    30. Felly P.H., "Rheological Parameters and Numerical Analysis of Cohesive Soils for the Maokong Landslides," Master Thesis, Nation Taiwan University of Science and Technology, Taiwan (2009).
    31. Fei, X.J., "Bingham yield stress of sediment water mixtures with hyperconcentration," J. Sediment Res., 3, pp. 19-28 (1981).
    32. FLO-2D, Flood routing model, Version 2007.06. (2004).
    33. Hungr, O., Evans, S.G., Bovis, M.J. and Hutchinson, J.N., "A review of the classification of landslides of the flow type," Environ. and Eng. Geoscience. VII(3), pp. 221-238 (2001).
    34. Huang, X. and Garcia, M.H., "A Herschel-Bulkley model for mud flow down a slope," J. Fluid Mech., 374, pp. 305-333 (1998).
    35. Lorenzini, G. and Mazza, N., "Debris flow phenomenology and rheological modeling, "WIT Press, Southampton, UK (2004).
    36. LHermite, R. and Tournon, G., "Vibration of Fresh Concrete, " Technical Publication, No.2, Paris (1948).
    37. O'Brien, J.S. and Julien, P. Y., "Physical properties and mechanics of hyperconcentrated sediment flows," Specialty Conf. on the Delineation of Landslides, Flash Floods and Debris Flow Hazards in Utah, pp.260-279 (1985).
    38. O’Brien, J.S., "Physical processes, rheology and modeling of mudflow," PhD Dissertation, Dep. of Civil Eng., Colorado State Univ., Fort Collins, USA (1986).
    39. O’Brien, J. S. and Julien, P. Y., "Laboratory Analysis of Mudflow Properties," ASCE, Journal of Hydraulic Engineering , Vol. 114, No 8, pp. 877-887 (1988).
    40. O'Brien, J.S. and Julien, P.J. and Fullerton, W.T., "Two-dimensional water flood and mudflow simulation," Journal of Hydraulic Engineering, ASCE, Vol.119, No.2, pp.244-261 (1993).
    41. Shannon Hsien-Heng Lee, Budijanto Widjaja, "Phase concept for mudflow based on the influence of viscosity," Soils and Foundations, Vol. 53(1), PP. 77-90 (2013).
    42. Takahashi,T., "Debris Flow, " Balkema, Rotterdam, pp.134-153 (1991).
    43. Takahashi, T., "Debris flow:mechanics, prediction and countermeasures," Taylor and Francis, London, UK (2007).
    44. Vans, D.J, “Landslides and Engineering Practice”, Highway Research Board Special Report ,No.29, National Academy of Science, USA (1958).
    45. Varnes, D.J., "Slope movement types and processes," Landslides: Analysis and Control, Transp. Research Board, Washington D.C., USA (1978).
    46. Van Dine, D.F., "Debris flow and debris torrents in the southern Canadian Cordillera," J.Can.Geotech., Vol.22, pp.44-68 (1985).

    QR CODE