簡易檢索 / 詳目顯示

研究生: 黃聖凱
Sheng-Kai Huang
論文名稱: 滾刀磨銳機之滾刀刃口面磨銳誤差修正研究
STUDY ON THE FLANK CORRECTION OF HOB FLUTES BASED ON THE HOB SHARPENING MACHINE
指導教授: 石伊蓓
Yi-pei Shih
口試委員: 王勵群
Li-chun Wang  
蔡高岳
Kao-yueh Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 63
中文關鍵詞: 刃口面誤差修正滾刀磨銳六軸CNC滾刀磨銳機
外文關鍵詞: flank correction, hob sharpening, six-axis CNC hob sharpening machine
相關次數: 點閱:109下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據齒輪原理與微分幾何觀念,本論文推導出泛用滾刀磨銳機之滾刀刃口面數學模式。此數學模式可以做為逆推砂輪軸向廓形的基礎,並能模擬砂輪磨銳滾刀刃口面的運動。此加工法為成形砂輪磨法,當輪磨不同螺旋角的滾刀刃口面所需之砂輪廓形並不相同,本論文主要目的為探討是否能使用相同的砂輪廓形,磨銳一定範圍螺旋角的滾刀刃口面。另外一個目的則是建立現有CNC滾刀磨銳機之滾刀刃口面數學模式,及其製造誤差修正的方法。首先根據陸聯精密公司CNC滾刀磨銳機之機台結構配置,建立六軸CNC滾刀磨銳機座標轉換矩陣,再利用泛用滾刀磨銳機和六軸CNC滾刀磨銳機之磨削運動必需相同的關係,可由已知泛用滾刀磨銳機機械設定推導出六軸滾刀磨銳機之機械設定,進而得到此機器磨削之滾刀刃口面數學模式。依據此滾刀刃口面數學模式,可建立機器各軸之於磨削面的敏感度矩陣,再加上已知之滾刀刃口面之誤差量,使用線性回歸的方法計算出機械設定修正量,最後使用修正後機械設定磨削工件,以達成降低機械製造誤差的目的。本論文只做到數學模式建立和推導,所有誤差和修正結果皆使用電腦程式模擬。


    Based on the theory of gearing and differential geometry, we develop a mathematical model for the cutting face of hob based on the universal-type hob sharpening machine. Apply the proposed mathematical model, the axial profile of the grinding wheel can be derived, and it also can simulate the motion for the grinding wheel sharpening the cutting face of hob.
    This manufacturing process is the profile grinding method. It is well-known that the axial profiles of wheels for grinding different helical angles of hob flutes are not the same in this process. Therefore, the main purpose of the thesis is to investigate whether the same wheel profile can be use to sharpen the cutting faces with a range of helical angles to satisfy the demand of hob precision or not. Another purpose is to establish the mathematical model for the cutting face of hobs based on the six-axis CNC hob sharpening machine and its correction method for reducing the manufacturing errors.
    Based on the structure of CNC hob sharpening machine of Luren Precision Co., Ltd, the coordinate systems of the six-axis CNC hob sharpening machine are established at first. The six-axis movement for resharpening the cutting face of hob can be obtained by way of the conversion from a universal machine to a six-axis machine. And then, the mathematical model for the cutting face of hob is derived based on the six-axis CNC hob sharpening machine.
    Based on the mathematical model of the hob cutting face, the sensitivity matrix of six-axis machine settings is established. According to this sensitivity matrix and the given flank errors of hob cutting face, the corrections for six-axis machine settings can be calculated by the linear regression. The corrections of machine settings can be applied to regrind the work-piece for reducing the manufacturing errors. In this thesis, all results are obtained by the computer simulation.

    中文摘要 I Abstract II 誌 謝 III 目 錄 IV 符號索引 VI 圖表索引 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 文獻回顧 4 1.4 論文架構 5 第二章 滾刀設計及其精度介紹 6 2.1 前言 6 2.2 滾刀設計介紹 6 2.3 滾刀精度標準 7 2.4 滾刀刃口面重新磨銳 11 2.5 小結 11 第三章 泛用型滾刀磨銳機之數學模式建立 12 3.1 前言 12 3.2 建立滾刀理論直邊刃口螺旋槽面數學方程式 12 3.3 建立泛用型滾刀磨銳機座標系統 17 3.4 推導砂輪軸向輪廓數學模式 20 3.5 建立泛用型滾刀磨銳機砂輪磨削之滾刀刃口面位置和法向量數學模式 22 3.6 計算滾刀刃口面拓樸點位置和法向量 24 3.7數值範例 26 3.8 小結 28 第四章 滾刀刃口面之誤差分析 29 4.1 前言 29 4.2 滾刀刃口面拓樸點法向誤差計算方法 29 4.3數值範例 33 4.4 小結 37 第五章 六軸CNC滾刀磨銳機之滾刀刃口面誤差修正方法 38 5.1 前言 38 5.2 六軸CNC滾刀磨銳機座標系統 38 5.3 推導六軸CNC滾刀磨銳機之機械設定數學模式 43 5.4 建立六軸CNC滾刀磨銳機之滾刀刃口面位置和法向量數學模式 45 5.5 六軸CNC滾刀磨銳機之製造誤差修正方法 46 5.6 假設滾刀刃口面拓樸誤差 48 5.7 數值範例 49 5.8 小結 50 第六章 結論與建議 59 6.1 結論 59 6.2 建議 60 參考文獻 61 作者簡介 63

    [1] Litvin, F. L., 1994, Gear Geometry and Applied Theory, Prentice-Hall, New Jersey.
    [2] Litvin,F.L., 1989, Theory of Gearing, NASA Reference Publication No.1212, Washingtion, DC.
    [3] Litvin, F. L. and Kin, V., 1992, “Computerized Simulation of Meshing and Bearing Contact for Single-Enveloping Worm-Gear Drives,” ASME J. Mech. Des., 114(2), pp. 313-316.
    [4] Simon, V., 1982, “Grinding Wheel Profile for Hob Relief Grinding,” ASME J. Mech. Des., 104, pp. 731-742.
    [5] Simon, V., 1988 “Computer Aided Manufacture of High Precision Hob,” Int. J. Mach. Manu., 28(4), pp. 443-452.
    [6] Simon,V. 1993, “Hob for Worm Gear Manufacturing with Circular Profile,” Int. J. Mach. Manu., 33(4), pp. 615-625.
    [7] Kagiwada T., 1994, “Computer Aided Thread Grinding Without Form Dressing,” JSME Int. J., Ser. C, 37(1), pp. 217-223.
    [8] Chang, S-L., 2002, “Precision Grinding of Helical Gashes for Hob Cutters,” J. CSME, 23(4), pp. 313-320.
    [9] Shih, Y-P., and Fong, Z-H., 2008, “Flank Correction for Spiral Bevel and Hypoid Gears on a Six-Axis CNC Hypoid Gear Generator,” ASME J. Mech. Des., 130(6), pp. 1–11.
    [10] ANSI/AGMA1102-A03, 2008, Tolerance Specification for Gear Hobs, Alexandria VA.
    [11] 陸聯精密公司,LHG-3040滾刀磨銳機型。
    [12] 四川省機械工業局編,1983,複雜刀具的使用、重磨與檢驗,機械工業出版社,北京。
    [13] 方宏聲,1996,蝸桿蝸輪組之製造分析,國立交通大學博士論文。
    [14] 梁立奇,2001,滾刀磨銳機之砂輪修整敏感度分析,國立中正大學碩士論文。
    [15] 曾冠智,2002,滾刀數學模式的建立與滾齒加工後工件齒輪之齒面誤差分析,國立中正大學碩士論文。
    [16] 吳俊霖,2006,六軸CNC加工戟齒輪路徑規劃與電腦模擬,國立中正大學碩士論文。
    [17] 四川省機械工業局編,1982,齒輪刀具設計理論基礎,機械工業出版社,北京.
    [18] 張永爵,1998,齒輪的設計和製造(上),徐氏基金會出版,台北。
    [19] 石伊蓓、林忠運,2006年8月,面滾式蝸線傘齒輪和戟齒輪之齒面修正技術,機械月刊, 第373期,文pp. 50-63。

    QR CODE