簡易檢索 / 詳目顯示

研究生: 胡廷宇
Ting-Yu Hu
論文名稱: GaS, Ga2S3及GaSe奈米材料之合成與光電性質研究
Synthesis and Optoelectrical Properties of GaS, Ga2S3 and GaSe Nanomaterials
指導教授: 王秋燕
Chiu-Yen Wang
口試委員: 周苡嘉
Yi-Chia Chou
蔡孟霖
Meng-Lin Tsai
王秋燕
Chiu-Yen Wang
楊承山
Chan-Shan Yang
葉炳宏
Ping-Hung Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 183
中文關鍵詞: 硫化鎵三硫化二鎵硒化鎵光感測器奈米片奈米帶
外文關鍵詞: GaS, Ga2S3, GaSe, Photodetector, Nanoflakes, Nanobelts
相關次數: 點閱:527下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

此論文中,研究主要被分為三大部分:首先,探討GaS及Ga2S3 奈米片引入SnI2和I2之成長情形和GaS應用於光感測器之性質分析;第二部分,GaS奈米帶之光電性質分析及Ni退火後對元件產生之結構及電性改變之結果探討;第三部分,GaSe奈米帶之光電性質分析及Ni退火後,元件產生之結構及電性改變之結果探討。
GaS奈米片和Ga2S3奈米片在相同熱處理環境下同時被製備,藉由不同種類及劑量的催化劑.。基於GaS奈米片和Ga2S3奈米片本身的水溶性,對應元件必須製備於乾製程而非濕製程,所以在此以銅網作為遮罩來提供元件的電路設計。由於通道限制於銅網的線寬,所以Ga2S3奈米片之元件較難以被製備,因為Ga2S3奈米片之大小及厚度難以被控制在合適的尺寸。GaS奈米片之光感測器在450 nm雷射激發下展現出之性質:0.3 A/W之光響應、82.15 %之外部量子轉換效率、1.37×1011之比探測率以及0.33的吸收係數。
高比表面積之GaS奈米帶為光感測器且探討在Ni退火後之光電性質改變。比較GaS奈米片和GaS奈米帶之光電性質,可以發現GaS奈米帶能夠展現更好的光響應在405 nm、450 nm和488 nm雷射之激發下。結果指出材料之形貌、形狀和尺寸(軸向長度和厚度) 不只會影響材料的穩定性更會影響其元件的表現。元件Ni電極之快速熱退火擴散行為製備GaS /Ni-Ga-S 之奈米帶異質結構,從Scanning Electron Microscope (SEM)影像和Energy-Dispersive X-ray Spectroscopy (EDS)線性掃描分析顯示Ni的擴散且隨著溫度及時間增加而增長。500度30秒之退火條件下,可以觀察到鎳已擴散至全部通道區域,而由變溫試驗之結果證明此元件已呈現金屬之導電性質,導電率也從原先的1.34 × 10-7 Ω-1m-1 上升至4.83 Ω-1m-1 並且沒有任何光的響應。450度30秒之退火條件,得到GaS /Ni-Ga-S之異質結構SEM影像和EDS線性掃描分析結果,觀察到不對稱的鎳擴散行為。由於鎳熱擴散改善介面傳輸行為,使得導電率增進了百倍,由原先的1.34 × 10-7 Ω-1m-1 上升至2.26 × 10-5 Ω-1m-1. 然而光響應之波長只發生在405 nm。
GaSe奈米帶之光感測器研究是基於畢業生Andre先前的工作,有些問題需要被釐清。首先,GaSe奈米帶光感測器在532 nm之雷射激發下能夠產生高的光電流並使得吸收係數大於1。因為基於理論我們知道其數值應當小於1,故這在光感測器中是不常見的。 第二,GaSe奈米帶與Ni電極之接面的蕭特基屏障數值,需經過實驗確認而得以分析其金屬半導體接面能帶之特性。然而,本論文中證明GaSe奈米帶在532 nm雷射激發下,未產生電流放大的效應並遵守光感測器性質之規則,而其差異應該是來自於先前不穩定的雷射源訊號。再者,兩組GaSe奈米帶光感測器之變溫試驗,都顯示出0.2 eV的蕭特基屏障在GaSe奈米帶及Ni電極之間,能帶結構也證明其接觸型態為蕭特基接觸。GaSe奈米帶光感測器進行Ni電極之快速退火,從SEM影像和EDS線性半定量分析中發現Ni的擴散行為。再者,電性結果也印證奈米片之結構變化。我們發現蕭特基屏障出現了一系列的改變,隨著退火溫度的上升,其數值由原本未退火的0.2 eV下降到0.17 eV,最後降至0.14 eV.。退火後的GaSe元件電性分析結果顯示,不同程度的退火參數將影響元件的光電性質。經過450度15秒之退火過程,在405 nm雷射下的光響應度由原先的2080 A/W下降至320 A/W,而在經過500度30秒之退火後,光響應度更進一步下降至31.5 A/W。


In this thesis, the researches were divided into three parts. First, the fabricating process of GaS nanoflakes, Ga2S3 nanoflakes by introducing the SnI2 and I2 as catalysts and the GaS nanoflakes were applying in photodetector. Second, the characteristic analysis of GaS nanobelts and apply in photodetector which conducted the nickel annealing and without nickel annealing. Third, the characteristic analysis of GaSe nanobelts, application in photodetector which conducted the nickel-annealing and without nickel annealing.
The GaS nanoflakes and Ga2S3 nanoflakes will be proved they can fabricate by different catalyst and different mass amount of I2. Based on the intrinsic moisture property of GaS and Ga2S3 materials, the electrical device should be fabricated with dry process instead of wet process. We introduced the TEM Copper grid as the shadow mask to define the electrical circuits of device. However, the hard controllable lateral size of Ga2S3 nanoflakes made it difficult to apply in the shadow mask process due to the limit of channel length from the Copper grid bar. The stable signals of photoelectrical measured results of GaS nanoflake photodetector will present in this thesis. The best performance of device was occurring in 450 nm laser exposure of R = 0.3 A/W, EQE = 82.15 %, Detectivity = 1.37 × 1011 Jones and α = 0.33.
In order to obtain the high surface-area-ratio of GaS nanoscale materials and fabricate better device to conduct the Ni annealing process, the GaS nanobelts were fabricated and apply in photodetector. In comparison of photoelectrical measured results, the performance of GaS nanobelt was slightly better than GaS nanoflake (R, EQE, D* of GaS nanobelt exhibit 10 times higher than GaS nanoflake in 405 nm, 450 nm and 488 nm laser exposure). The results indicate that the morphology, shape and scale size (lateral size and thickness) will not only affect the material stability but also affect the performance of device. After Ni Rapid Thermal Annealing (RTA) process we can obtain the GaS/Ni-Ga-S heterostructure. The Scanning Electron Microscope (SEM) images and Energy-Dispersive X-ray Spectroscopy (EDS) line scan indicate the existence of Ni and the electrical results prove that the heterostructure from GaS/Ni-Ga-S can improve the photoelectrical properties. From the SEM images and EDS linear scan analysis results, it is shown that the diffusion of Ni and the diffusion distance increase with the increase of temperature and time. Under the annealing condition of 500 oC for 30 s, it can be observed that nickel has diffused into the nanobelt in the complete channel area, and the results of the variable temperature test prove that this device has exhibited the conductive properties of metal, and the conductivity has also changed from the original 1.34 × 10-7 Ω-1m-1 rises to 4.83 Ω-1m-1 and does not respond to any light. The annealing condition of 450 ºC for 30 s can obtain the heterostructure of GaS/Ni-Ga-S, and the asymmetric nickel diffusion behavior can be observed from the SEM images and EDS linear scanning analysis results. Due to the improved interface transmission behavior due to nickel diffusion, the electrical conductivity is increased by a factor of 100, from the original 1.34 × 10-7 Ω-1m-1 to 2.26 × 10-5 Ω-1m-1. However, the wavelength of the photoresponse only occurs in the 405 nm.
Based on the graduated senior Andre’s work, there have some issues were required to ensure. First, the GaSe nanobelt shown the effect in 532 nm laser exposure, it will cause substantial increasing photocurrent which means the device has higher absorption of light. The absorption coefficient of device is larger than 1 and it is abnormal in the photodetector. Second issue is the realistic band alignment structure still remains the problem need to be figured out and to recheck the value of Schottky barrier.
In my works, the photoelectrical properties of GaSe nanobelt device prove that the material didn’t have the plasma effect in 532 nm and obey the rule of photodetector properties. The difference between our device’s results probably caused by the 532 nm laser which used by Andre has the problem then result in the unreasonable signals The varied temperature test results we can obtain the value of Schottky barrier is ~0.2 eV and the band alignment structure also proves the contact type is Schottky barrier.
In my case of GaSe nanobelt device with Ni annealing process, the RTA was carried out to conduct it and the results of SEM and EDS line scan shown the Ni was diffusing into the GaSe nanobelt, thus, the electrical characteristic results also imply the structural transformation of nanobelt. We found that the Schottky barrier was change from 0.2 eV to 0.17 eV to 0.14 eV with higher temperature of RTA process and it indicates the annealing process can improve the quality of interface. The electrical results prove that the electrical property was improving but the performance of photodetector can’t exhibit better than Ni annealing before. Different degrees of annealing parameters will affect the optoelectronic properties of the device. After annealing at 450 ºC for 15 s, the photoresponsivity under 405 nm laser decreased from 2080 A/W to 320 A/W, and after annealing at 500 degrees for 30 s, the photoresponsivity further decreased to 31.5 A/W.

摘要 I Abstract III 致謝 VI Contents VII List of Figures XI List of Tables XIX List of Abbreviations and Acronyms XX Chapter 1. Introduction 1 1.1 Two-Dimensional Nanomaterials 1 1.2 III-VI Semiconductors 2 1.3 The Structure and Characteristic of GaS 4 1.4 The Structure and Characteristics of Ga2S3 6 1.5 The Structure and Characteristics of GaSe 8 1.6 Flow Chart of Research 10 Chapter 2. Experiment Procedures 16 2.1 Fabrication of GaS and Ga2S3 Nanoflakes 16 2.1.1 Fabrication of GaS and Ga2S3 Nanoflakes with SnI2 and I2 as Catalysts 16 2.1.2 Fabrication of GaS and Ga2S3 Nanoflakes with Different Mass Amounts of I2 19 2.2 Fabrication of GaS Nanobelts 21 2.3 Fabrication of GaSe Nanobelts 23 2.4 Device Fabrication Process 25 2.4.1 Device Fabrication with Wet Process 25 2.4.2 Device Fabrication with Dry Process 27 2.4.3 Photodetector and MOSFET Device Measurement 29 Chapter 3. Results and Discussion 30 3.1 Research Motivation of GaS Nanoflakes and Ga2S3 Nanoflakes and Photodetector Application of GaS Nanoflakes 30 3.2 Characterization of GaS Nanoflakes and Ga2S3 Nanoflakes 31 3.2.1 SEM and EDS Analysis of GaS Nanoflakes and Ga2S3 Nanoflakes fabricated by the Catalysts of SnI2 and I2 31 3.2.2 SEM and EDS Analysis of GaS Nanoflakes and Ga2S3 Nanoflakes Fabricated by Different Amounts of I2 34 3.2.3 XRD Analysis of Ga2S3 Nanoflakes 36 3.2.4 Raman Analysis of Ga2S3 Nanoflakes 39 3.2.5 UV Analysis of Ga2S3 Nanoflakes 41 3.2.6 XRD Analysis of GaS Nanoflakes 43 3.2.7 Raman Analysis of GaS Nanoflakes 46 3.2.8 ;UV Analysis of GaS Nanoflakes 48 3.2.9 The Varied Temperature Test of the Ni Contact GaS Nanoflakes Device 50 3.2.10 The Energy Band Diagrams of Ni Contact with GaS Nanoflakes 53 3.2.11 Optoelectronic Performance of GaS Nanoflakes 55 3.2.12 The Performance Comparison of GaS Nanoflakes Photodetector and Others Work 63 3.3 Research Motivation of GaS Nanobelts and Application in Photodetector 65 3.4 Characterization of GaS Nanobelts 65 3.4.1 SEM and EDS Analysis of GaS Nanobelts 65 3.4.2 XRD Analysis of GaS Nanobelts 67 3.4.3 Raman Analysis of GaS Nanobelts 70 3.4.4 UV spectrum analysis of GaS Nanobelts 72 3.4.5 The Performance of GaS Nanobelt Photodetector Devices 74 3.5 Research Motivation of GaSe Nanobelts and Application in Photodetector. 91 3.6 Characterization of GaSe Nanobelts 91 3.6.1 SEM and EDS Analysis of GaSe Nanobelts 91 3.6.2 XRD Analysis of GaSe Nanobelts 93 3.6.3 Raman Analysis of GaSe Nanobelts 95 3.6.4 UV Spectrum Analysis of GaSe Nanobelts 97 3.6.5 The Energy Band Diagrams of Ni Contact with GaSe Determined by the Varied Temperature Test 99 3.6.6 Optoelectronic Performance of Ni Contact of GaSe Nanobelt Photodetector 102 Chapter 4. Summary and Conclusions 141 4.1 Fabrication of GaS and Ga2S3 Nanoflakes 141 4.2 Device Performance of GaS Nanoflakes 141 4.3 Device Performance of GaS Nanobelt Device I, Device II Before and After RTA 142 4.4 Device Performance of GaSe Nanobelt Device I, Device II Before and After RTA 144 Chapter 5. Future Works 146 5.1 The Electrical Properties of GaS NB/Ti Device and Detailed Structure Analysis of GaS NB/Ni Device Which Conducted RTA Process 146 5.2 The Detailed Structure Analysis of GaSe NB/Ni Device Which Conducted RTA Process 146 References 147

References
[1] Maria. L. G-B, Sandra. I, Ramirez. J, Apsahara G, Zandra. E, Jennete, Aparicio, "Low Dimensional Nanostructures: Measurement and Remediation Technologies Applied to Trace Heavy Metals in Water". Intech. Open, Trace Metals in the Environment, 2020, 110, 93263-93287.
[2] B. Zhang, “Physical Fundamentals of Nanomaterials”, Elsevier Inc., 2018.
[3] D. Shi, Z. Guo and N. Bedford, “Nanomaterials and Devices, 2014.
[4] Pak. J, Jang. Y, Byun. J, Cho. K, Kim. T, Kim. J, Lee. Takhee, “Two-dimensional Thickness-Dependent Avalanche Breakdown Phenomena in MoS2 Field-Effect Transistors under High Electric Fields”, ACS Nano, 2018, 12, 7109-16.
[5] Chen Y, Chen D, Li Z and Peng X, “Symmetry-Breaking for Formation of Rectangular CdSe Two-Dimensional Nanocrystals in Zinc-Blende Structure" J. Am. Chem. Soc., 2018, 139, 10009-19.
[6] Li. L, Gong. P L, Wang. W. K, Deng. B, Pi. L. J, Yu. J, Zhou. X, Shi. X. Q, Li. H. Q and Zhai. T. Y, “Strong In-Plane Anisotropies of Optical and Electrical Response in Layered Dimetal Chalcogenide”, ACS Nano, 2017, 11, 10264-72.
[7] Liu. Y. N, Gu. Qiangqiang, Peng. Yu, Qi. S, Zhang. N, Zhang. Y, Ma. X, Chen, “Raman Signatures of Broken Inversion Symmetry and In-Plane Anisotropy in Type-II Semimetal Candidate TaIrTe4” Adv. Mater, 2018, 30, 1706402.
[8] Y. Dong, Z. Wu, W. Ren, H. Cheng, X. Bao, “Graphene: a Promising 2D Material for Electrochemical Energy Storage.” Sci. Bull, 2017, 62, 724-740.
[9] X. Peng, L. Peng, C. Wu, Y. Xie, ” Two Dimensional Nanomaterials for Flexible Supercapacitors. “Chem. Soc. Rev, 2014, 43, 3303-3323.
[10] L. Wang, Q. Xiong, F. Xiao, H. Duan, “2D Nanomaterials Based Electrochemical Biosensors for Cancer Diagosis.” Biosens. Bioelectron, 2017, 9, 136-151.
[11] H. Wang, C, Li, P. Fang, Z. Zhang, J. Zhang. “Synthesis, Properties and Optoelectronic Applications of Two-Dimensional MoS2 and MoS2-Based Heterostructures.” Chem. Soc. Rev, 2018, 47, 6101-6127.
[12] X. Wang, Q. Weng, Y. Yang, Y. Bando, D. Golberg, “Hybrid Two-Dimensional Materials in Rechargeable Battery Applications and Their Microscopic Mechanisms.” Chem. Soc. Rev, 2016, 45, 4042-4073.
[13] P. Hu, Z. Wen, L. Wang, P. Tan, K. Xiao, “Synthesis of few-layer GaSe nanosheets for high performance photodetectors.” ACS Nano, 2012, 6, 5988-5994.
[14] F. Liu, H. Shimotani, H. Shang, T. Kanagasekaran, V. Zolyomi, N. Drummond, V. Falko, K. Tanigaki, “High-Sensitivity Photodetectors Based on Multilayer GaTe Flakes.”, ACS Nano, 2014, 8, 752-760.
[15] G. W. Mudd, S. A. Svatek, T. Ren, A. Patanè, O. Makarovsky, L. Eaves, P. H. Beton, Z. D. Kovalyuk, G. V. Lashkarev, Z. R. Kudrynskyi, “Tuning the Bandgap of Exfoliated InSe Nanosheets by Quantum Confinement”, Adv. Mater, 2013, 25, 5714-5718.
[16] J. O. Island, S. I. Blanter, M. Buscema, H. S. J. Van Der Zant, A. Castellanos-Gomez, “Gate Controlled Photocurrent Generation Mechanisms in High-Gain In2Se3 Phototransistors.” Nano Lett, 2015, 15, 7853-7860.
[17] W. Huang, L. Gan, H. Yang, N. Zhou, R. Wang, W. Wu, H. Li, Y. Ma, H. Zeng, T. Zhai, “Precise Vapor-Phase Synthesis of Two-Dimensional Atomic Single Crystals.” Adv. Funct. Mater.2017, 27, 1702448.
[18] G. Han, Z.-G.Chen, C. Sun, L. Yang, L. Cheng, Z. Li, W. Lu, Z. M. Gibbs, G. J. Snyder, K. Jack, J. Drennan, J. Zou, “A New Crystal: Layer-Structured Rhombohedral In3Se4.” Cryst Eng Comm, 2014, 16, 393-398.
[19] A. Segura, “Layered Indium Selenide under High Pressure: a review.” Crystals, 2018, 8, 206-211.
[20] G. Sinha, S. K. Panda, A. Datta, P. G. Chavan, D. R. Shinde, M. A. More, D. S. Joag. A. Patra, “Controlled Growth of Well-Aligned GaS Nanoribbon-like Structures and Their Field Emission Properties.” ACS Appl. Mater. Interfaces, 2011, 3, 2130-2135.
[21] Ma, Y. Dai, Y. Guo, M. Yu, L. H, “Tunable Electronic and Dielectric Behavior of GaS and GaSe Monolayers.” Phys. Chem, 2013, 15, 7098-7105.
[22] Yang, S. Li, Y. Wang, X. Huo, N. Xia, J.B. Li, S.S. Li, J. “Gate-Tunable Diode-like Current Rectification and Bipolar Transport in Multilayer van der Waals ReSe2/ WS2 p–n Heterojunctions.” Phys. Chem. Chem. Phys, 2016, 18,27750−27753.
[23] S. Yang, Y. Li, X, N. Huo, J. Xia, S.S, L.J. Li., “High Performance Few-layer GaS Photodetector and Its Unique Photo-response in Different Gas Environments.” Nanoscale, 2014, 6, 2582–2587.
[24] P.A. Hu, L. Wang, M. Yoon, J. Z, W. F, X. W, Z. Wen, J. C. I, Y. Miyamoto, D. B. Geohegan, K. Xiao, Nano Lett, “Highly Responsive Ultrathin GaS Nanosheet Photodetectors on Rigid and Flexible Substrates.” 2013, 13, 1649−1654.
[25] K. Denoue, F. Chevire, C. Calers, L. Verger, D. Coq, L. Calvez, “Mechanochemical Synthesis and Structural Characterization of Gallium Sulfide Ga2S3.” Journal of Solid State Chemistry, Elsevier, 2020, 292, 121743-121750.
[26] Liu, H. F.; Antwi, K. K. A.; Yakovlev, N. L, Tan, H. R. Ong, L. T., Chua, S. J.; Chi, D. Z, “Synthesis and Phase Evolutions in Layered Structure of Ga2S3 Semiconductor Thin Films on Epiready GaAs (111) Substrates.” ACS Appl. Mater. Interfaces, 2014, 6, 3501– 3507.
[27] Barbouth, N, Berthier, Y. Oudar, J. Moison, J.-M. Bensoussan, M, “The First Steps of the Sulfurization of III-V Compounds”, J. Electrochem. Soc, 1986, 133, 1663– 1666.
[28] N. Zhou, L. Gan, R. Yang, F. Wang, L. Li, Y. Chen, D. Li, T. Zhai, “Nonlayered Two-Dimensional Defective Semiconductor γ-Ga2S3 toward Broadband Photodetection.” ACS Nano, 2019, 13, 6297-6307.
[29] Wieting. T. J, Schluter. M, “Electrons and Phonons in Layered Crystal Structures.” The Netherlands, 1979.
[30] Mooser. E, Schluter. M, “The Band-Gap Exactions in Gallium Selenide.” NuoVo. Cimento, 1973.
[31] Capozzi. V, “Optical Spectroscopy of Extrinsic Recombinations in Gallium Selenide.” Phys. Rev, 1989, 40, 3182-3189.
[32] Fan. P, Chettiar U.K, Cao L, Afshinmanesh F, Engheta N, Brongersma M. L, “An Invisible Metal-semiconductor Photodetector.” Nature photonics, 2012, 6, 380-385.
[33] Zhang Y, L.H, Wang H, Xie H, Liu R, Zhang S. L, Qiu Z. J, “Thickness Considerations of Two-dimensional Layered Semiconductors for Transistor Applications.” Scientific Report, 2016, 6, 29615-29621.
[34] Ko. J.P, A.A, Takamura T, Kim N.H, Sandhu A, “Thickness Dependence on the Optoelectronic Properties of Multilayered GaSe Based Photodetector.” Nanotechnology, 2016, 27, 325202.
[35] Tang L., Z.Z, Yuan S., Yang T, Zhou B., Hong Z, “Self-catalytic VLS Growth One Dimensional Layered GaSe Nanobelts For High Performance Photodetectors.” Journal of Phsics and Chemistry of Solids, 2018, 118, 186-191.
[36] Y. Wang, Y. Tang, H. Li, Z. Yang, Q. Zhang, Z. He, X. Huang, X. Wei, W. Tang, W. Huang, Z. Wu, “p-GaSe/n-Ga2O3 van der Waals Heterostructure Photodetector at Solar-blind Wavelengths with Ultrahigh Responsivity and Detectivity, Appl. Phys, 2020, 117, 163104.
[37] F. Yan, L. Zhao, A. Patane, P. Hu, X. Wei, W. Luo, D. Zhang, Q. Lv, Q. Feng, C. Shen, “Fast, multicolor Photodetection with Graphene-Contacted p-GaSe/n-InSe van der Waals Heterostructures.” Nanotechonology, 2017, 28, 27.
[38] Q. Lv, F. Yan, X. Wei, K. Wang, “High-Performance, Self-Driven Photodetector Based on Graphene Sandwiched GaSe/WS2 Heterojunction.” Advanced Optical Materials, 2017, 6, 1700490-1700496.
[39] J. Ning, Y. Zhou, J. Zhang, W. Lu, J. Dong, C. Yan, D. Wang, X. Shen, X. Feng, H. Zhou, Y. Hao, “Self-driven Photodetector Based on a GaSe/MoSe2 Selenide van der Waals Heterojunction with the Hybrid Contact.” Appl. Phys, 2020, 117, 163104-163110.
[40] E. S. Hwang, J. Lee, “Surfactant-Assisted Metallorganic CVD of (111)-Oriented Copper Films with Excellent Surface Smoothness.” Electrochemical and Solid-State Letters, 2000, 3, 138-140.
[41] K. A. Kokh, Y. M. Andreev, V. A. Svetlichnyi, G, V, Lanskii, A. E. Kokh. “Growth of GaSe and GaS Single Crystals.” Cryst. Res. Technol, 2011, 46, 327-330.
[42] M. B. Assouar, O. Elmazria, P. Kirsch, P. Alnot, “High-frequency Surface Acoustic Wave Devices Based on AIN/Diamond Layered Structure Realized Using E-beam Lithography.” Journal of Applied Physics, 2007, 101, 114507.
[43] D. H. Tien, J. Park, K. B. Kim, N. Lee, Y. Seo, “Characterization of Graphene-based FET Fabricated Using a Shadow Mask.” Scientific Reports, 2016, 6, 25050-25061.
[44] F. Yang, S. Zheng, H. Wang, W. Chu, Y. Dong, “A Thin Film Thermoelectric Device Fabricated by a Self-aligned Shadow Mask Method.” J. Micromech. Microeng, 2017, 27, 055005.
[45] A. Lu, J. Sun, J. Jiang, Q. Wan, “One-Shadow-Mask Self-assembles Ultralow-voltage Coplanar Homojunction Thin-film Transistor,” IEEE Electron Device Letters, 2010, 31, 1137-1139.
[46] G. Kogo, B. Xiao, S. Danquah, H. Lee, J. Niyogushima, “A Thin Film Efficient pn-junction Thermoelectric Device Fabricated by Self-align Shadow Mask.” Scientific Reports, 2020, 10, 1067-1072.
[47] Y. Lu, J. Chen, T. Chen, Y. Shu, R. Chang, Y. Sheng, V. Sheng, V. Shautsova, N. Mkhlze, P. Holdway, H. Bhaskaran, J. H. Warner,” Controlling Defects in Continuous 2D GaS Films for High-Performance Wavelength-Tunable UV-Discriminating Photodetectors”, Adv. Mater, 2019, 1906958.
[48] T. Chen, Y. Lu, Y. Sheng, Y. Shu, X. Li, R. Chang, “Ultrathin All-2D Lateral Graphene/GaS/Graphene UV Photodetectors by Direct CVD Growth.”, ACS Appl. Mater. Interfaces, 2019, 11, 48172-48178.
[49] Y. Lu, T. Chen, N. Mkhize, R. Chang, Y. Sheng, “GaS:WS2 Heterojunctions for Ultrathin Two-Dimensional Photodetectors with Large Linear Dynamic Range across Broad Wavelengths.” ACS Nano, 2021, 15, 19570-19580.
[50] G. H. Shin, G. B. Lee, C. Park, K. J. Lee, “High-Performance Field-Effect Transistor and Logic Gates Based on GaS-MoS2 van der Waals Heterostructure.” ACS Appl. Mater. Interfaces, 2022, 12, 5106-5122.
[51] C. Ho, X. Lai, C. Chuang, W. Kuo, K. Tiong, “The Study of Optical Properties of III2–VI3 Defect Semiconductor Group Compounds Ga2S3, Ga2Se3, In2S3, and In2Se3.” Advanced. Photonics. Research, 2020, 2, 2000110.
[52] A. Tumuluri, K. L. Naidu, K. C. James Raju, “Band Gap Determination Using Tauc’s Plot for LiNbO3 Thin Films.” IntJ. ChemTech, Res, 2014, 6, 3353-3356.
[53] K. Ozel, A. Yildiz, “A Self-Powered Ultraviolet Photodetector with Ultrahigh Photoresponsivity (208 MaW-1) based on SnO2 Nanostructures/Si Heterojunctions.” Phys. Status Solidi RRL, 2021, 15, 2100085.
[54] K. Ozel, A. Yildiz, “High-detectivity Ultraviolet-B Photodetector Based on SnO2 Thin Film/Si Heterojunction.” Semicond. Sci. Technol, 2021, 36, 095001.
[55] K. S. Gour, B. Bhattacharyya, O. P. Singh, A.K. Yadav, S. Husale, V. N. Singh, 1’Nanostructured Cu2ZnSnS4 (CZTS) Thin Film for Self-powered Broadband Photodetection.” Journal of Alloys and Compounds, 2018, 735, 285-290.
[56] W. H. Bragg, W. L. Bragg, “The Reflection of X-rays by Crystals” Royal Society. Mathematical. Physical and Engineering Sciences, 1913, 88, 605.
[57] C. Jastrzebski, K. Olkowska, D. J. Jastrzebski, M. Wierzbicki, W. Gebicki, S. Podsiadlo, “Raman Scattering Studies on Very Thin Layers of Gallium Sulfide (GaS) as a Function of Sample Thickness and Temperature.” J. Phys, Condens, Matter, 2019, 31, 075303.
[58] S. Pitale, M. Ghosh, S. G. Singh, H. Manasawala, G. D. Patra, S. Sen, “Characteristics of Al/Ge Schottky and Ohmic Contacts at Low Temperatures.” Materials Science in Semiconductor Processing, 2021, 130, 105820.
[59] Z. Fan, S. N. Mohammad, W. KIM, O. Aktas, A. E. Botchkarev, K. Suzue, H. Morkoc, “Ohmic Contacts and Schottky Barriers to n-GaN.” Journal of Electronic Materials, 1996, 25, 1703-1708.
[60] S. K. Panda, A. Datta, G. Sinba, S. Chaudhuri, “Synthesis of Well-Crystalline GaS Nanobetls and Their Unique Field Emission Behavior.” J. Phys. Chem. C, 2008, 112, 6240-6244.
[61] Z. Alexander, I. D. Zartsyn, D. N. Turchen, AV. Naumov, “Chemical Vapor Transport as a Means of Controlling the Composition of Condensed Phases.” Inorganic Materials, 2004, 40, 101-127.
[62] L. Tan, Y. F. Ding, X. Lin, W. Hu, M. Cai, H. Zhou, “Effective Shape-controlled Synthesis of Gallium Selenide Nanosheets by Vapor Phase Deposition.” NanoResearch, 2020, 13, 557-568.
[63] L. Tang, S. Yuan, T. Yang, B. Zhou, Z. Hong, “Self-catalystic VLS Growth One Dimensional Layered GaSe Nanobelts for High Performance Photodetectors.” Journal of Physics and Chemistry of Solids, 2018, 118, 186-191.
[64] L. Quan, G. Zhang, Y. Dai, Y. Wu, K. Jin, H. Ding et al, “The Raman Enhancement Effect on a Thin GaSe Flake and its Thickness Dependence.” Journal of Materials Chemistry, 2015, 3, 11129-11134.
[65] A. Zavrazhnov, S. Berezin, A. Kosykov, A. Naumov, M. Berezina, N. Brezhnev, “The Phase Diagram of the Ga-S System in the Concentration Range of 48-60.7 mol% S.” Journal of Thermal Analysis and Calorimetry, 2018, 134, 483-492.
[66] H. Okamoto, “Ga-Se (Gallium Selenium)”, JPEDAV, 2009, 65, 1547-7037.

無法下載圖示 全文公開日期 2027/09/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2027/09/19 (國家圖書館:臺灣博碩士論文系統)
QR CODE