簡易檢索 / 詳目顯示

研究生: 張顧耀
Ku-Yao Chang
論文名稱: 離散時域技術消除耦合帶通濾波器倍頻效應
Suppression of Second and Third Harmoncs of Coupled Bandpass Filter Using Z-domain Techniques
指導教授: 徐敬文
Ching-Wen Hsue
口試委員: 黃進芳
none
張勝良
none
蔡智明
none
陳國龍
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 80
中文關鍵詞: 微帶線帶斥濾波器微帶線帶通濾波器離散時域技術消除倍頻效應
外文關鍵詞: microstip line bandpass filter, spurious response., z-domain techniques
相關次數: 點閱:276下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

平行耦合微帶線帶通濾波器被廣泛使用在微波和毫米波系統。但由於平行耦合微帶線的奇模、偶模的相位速度不相同,會導致其有倍頻的頻率響應。在本論文中,我們將提出一種製作多頻帶的帶斥微波濾波器的新方法來抑制平行耦合微帶線帶通濾波器二倍及三倍的倍頻響應。此外,我們也將以本論文中所提出的設計方法實現具有四個傳輸零點的柴比雪夫型式II帶通濾波器。
此方法係先找出濾波器在z域中的系統方程式,然後搭配由本論文中所推導出來的各式傳輸線的鏈散矩陣,以串接、並接傳輸線的方式來完成濾波器的設計。
我們將量測各個濾波器的散射參數並與理論值進行比對,以證明本方法的可行
性。


Parallel coupled-line microstrip filter has been widely used in many microwave and millimeter wave systems. The filter usually degraded by the spurious response at twice the passband frequency, because the even and odd modes of each coupled section have different phase velocities. In this thesis, we propose a new design method to implement a microwave multi-band notch filter that suppresses the second and third harmoncs of bandpass filter. We also make use of the design method that we proposed to implement a Chebyshev type II band-pass filter with four transmission zeros.
In this method, the system function of a filter in the Z-domain is found first. Then with the chain-scattering matrices of various transmission lines derived in the thesis, the design of filter is finished with the cascading coupled, serial and shunt transmission lines. We have measured the S-Parameter of all the filters and compare those with the theoretical values to demonstrate the validity of the design method.

摘 要 I Abstract II 誌 謝 III 目 錄 IV 圖 表 索 引 VI 表 格 索 引 VIII 第1章 緒論 1.1 研究背景與動機 1.2 研究重點 1.3 論文架構 第2章 基本理論 2.1 濾波器基本原理 2.2 數位IIR濾波器設計方式 2.2.1 類比濾波器的設計概念 2.2.2 利用雙線性轉換設計IIR濾波器 2.3 微帶線基本特性分析 第3章 分析基本傳輸線元件與串聯網路的轉移函數 3.1 鏈散射矩陣 3.2 基本傳輸線元件及其對應的鏈散射參數分析 3.2.1 串聯傳輸線分析 3.2.2 二段式並聯開路傳輸線分析 3.2.3 平行耦合線分析 3.2.3.1 低通平行耦合線 3.2.3.2 高通平行耦合線 3.3 串接網路的轉移函數 第4章 設計微波濾波器的方法 4.1 選擇理想數位濾波器及相對應的基本傳輸線元件 4.2 將T(z)及F(z)分別轉換成相對應的TAR(z)及FAR(z) 4.3 求得各段之特性阻抗 4.4 Matlab最佳化程式方法 第5章 平行耦合線奇偶模對帶通濾波器的影響 5.1 平行耦合微帶線基本特性分析 5.2 傳統巴特渥斯平行耦合帶通濾波器 5.3 延長奇模態長度法抑制二倍頻響應 第6章 理論驗證及實作 6.1 多頻帶的帶斥濾波器抑制倍頻效應 6.2 柴比雪夫型式II帶通濾波器 第7章 總結 7.1 結論 7.2 未來研究方向 參考文獻

[ 1] M. L. Roy, et. All, “The continuously varying transmission-line technique-application to filter design, “IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1680-1687, Sept. 1999.

[ 2] Gaobiao Xiao; Yashiro, K.; Ning Guan; Ohkawa, S. “An effective method for designing nonuniformly coupled transmission-line filters “ IEEE Trans. Microwave Theory Tech., Vol. 49 pp.1027-1031 , June 2001

[ 3] E.Green, “Synthesis of Ladder Networks to Give Butterworth of Chebyshev Response in the Passband,” Proc. Inst. Elec. Eng., vol.101 IV, p.Monograph No.88,1954

[ 4] W.W. Mumford, “Maximally Flat Filters in Waveguide,” Bell Syst. Tech. J., vol. 27, pp.648-714, Oct. 1948

[ 5] R.Levy, “An Improved Design Procedure for the Multi-section Generalized Microwave Filters,” Proc. Inst. Elec. Eng., vol.104C, pp.173-182, Sept. 1957.

[ 6] W.C. Tang and S.K. Chaudhuri, “Triple-mode True Elliptic-function Filter Realization for Satellite Transponders,” in 1983 IEEE MTT-S Int. Microwave Symp. Dig., pp. 83-85, IEEE cat. No. 83CH1871-3, May 1983.

[ 7] R. Levy and I. Whiteley, “Synthesis of Distributed Elliptic-function Filters from Lumped-constant Prototypes,” IEEE trans. Microwave Theory Tech., vol. Mtt-14, pp. 506-517, Nov. 1966.

[ 8] D. M. Pozar, Microwave Engineering, 3nd ED., John Wiley & Sons, Inc.,2003.

[ 9] Da-Chiang Chang, “Discrete-Time Domain Techniques for the Desgin of Microwave Filters”, Nation Taiwan University of Science and Technology, July, 1998.

[ 10] Da-Chiang Chang and Ching-Wen Hsue, “Design and implementation of filters using transfer function in the Z domain”, IEEE Trans. Microwave Theory Tech., vol.50, pp.979-985, May 2001.

[ 11] JIA-SHEN G. HONG, and M. J. LANCASTER, Microstrip Filters for RF / Microwave Applications , John Wiley & Sons, Inc.,2001.

[ 12] S.-C. Pei and C.-C. Tseng, “IIR Multiple Notch Filter Design Based on Allpass Filter,” IEEE Trans. Circuits Syst. –II, vol. 44, pp. 133-136, Feb. 1997.

[ 13] A. V. Oppenheim and R. W. Shafer, Discrete-Time Signal Processing. New Jersey: Prentice-Hall, 1989.

[ 14] T. Coleman, M. A. Branch, A. Grace, Optimization Toolbox. The Math WorksInc.,User’s Guide Version 2. Natick, MA, 1999.

[ 15] D. Turner, R. Wilhelm, W. Lemberg, Line Calc. Agilent Technologies. Palo Alto, CA, 2000.

[ 16] J.-T. Kuo, S.-P. Chen and M. Jiang, “Parallel-coupled microstrip filters withover-coupled end stages for suppression of spurious responses”, IEEE Micro.Wireless Comp. Lett., vol. 13, no. 10, pp.440-442, Oct. 2003.

[ 17] S. B. Cohn, “Parallel transmission-line-resonator filters”, IRE Trans. MTT, vol. MTT-6, pp. 223-231, April 1958.

[ 18] T. Edwards, Foundations for Microstrip Circuit Design. New York: John Wiley & Sons, 1991.
[ 19] A. Gopinath and C. Gupta, “Capacitance Parameters of Discontinuities in Microstrip lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-26, pp.831-836, Oct. 1978.
[ 20] I. J Bahl and D. k. Trivedi, “ A Designer’s Guide to Microstrip Line”, Microvave, May 1977.

[ 21] K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip Liines and Slotilines, Artech House, Dedham, Mass.

[ 22] G. L. Matthaei, L. Young, and E. M. T. Jones Microwave Filters,Impedance-Maching Networks, and Coupling Structures, Artech House,

[ 23] C. B. Rorabaugh, Digital Filter Designer’s Handbook, McGraw-Hill, Inc., 1993.

[ 24] Hong-Ming Lee, and Chih-Ming Tsai “Improved Coupled-Microstrip Filter Using Effective Even-Mode and Odd-Mode Characteristic Impedances”, IEEE Trans. Microwave Theory Tech., vol. 53, NO.9, Sep. 2005.

QR CODE