簡易檢索 / 詳目顯示

研究生: 張雅鈞
Ya-Chun Chang
論文名稱: 鐵鎂鋁載氧體應用於綠藻與綠藻-聚丙烯化學迴路燃燒
Chemical Looping Combustion of Algae and Algae- Polypropylene with Fe-Mg-Al Oxygen Carriers
指導教授: 顧洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
曾堯宣
Yao-Hsuan Tseng
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 158
中文關鍵詞: 化學迴路燃燒綠藻鐵鎂鋁載氧體聚丙烯SO2及NOx
外文關鍵詞: Chemical looping combustion, Iron-magnesium-aluminum oxygen carrier, Algae, Polypropylene, NOx and SO2
相關次數: 點閱:184下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化學迴路燃燒程序相較於傳統燃燒有多項優勢。此程序利用載氧體在燃料反應器中進行還原反應,產出高純度之二氧化碳;隨後,載氧體進入空氣反應器,由空氣將載氧體氧化至最高氧化態並同時產生熱能。載氧體在兩個反應器中持續循環使用,因而稱化學迴路燃燒。本研究中,製備鐵鎂鋁載氧體並於固定床反應器中評估其綠藻及綠藻-聚丙烯(PP)化學迴圈燃燒之性能。
    以鐵鎂鋁金屬莫爾比為6:1:3之FMA613載氧體在1000 ℃ 鍛燒4小時之條件下展現出良好的反應性及循環性。藉由XRD晶相分析,主要晶相為尖晶石結構之MgFe2O4。在合成氣氣氛下進行還原反應,MgFe2O4首先被還原為氧化鎂及氧化鐵相,最終轉化為金屬鐵。此外,對於FMA613-1000-4載氧體的還原動力學研究發現,在氫氣氣氛下進行還原反應時,擬合數據符合縮核模型中之R3模型且還原活化能為17.27 kJ/mol。
    本研究的後半部分著重於FMA613-1000-4載氧體與綠藻間之化學迴圈燃燒程序。綠藻燃燒實驗中,最佳操作參數為溫度900 ℃、OC/F比為15、氣體流速為500 mL/min。在綠藻-PP化學迴路燃燒中,氣體流速對結果影響不明顯,而最佳操作條件為溫度950 ℃、OC/F比為17。在循環性實驗中,經過4次循環後仍保持穩定。對於NOx排放,顯示生成中間體Fe4N,進而降低NOx排放。對於SO2排放,發現在過量氧氣存在下,SO2會逐漸氧化為SO3,導致SO2出口濃度逐漸減少。


    Chemical looping combustion (CLC) process has more advantages than traditional combustion. A high concentration of carbon dioxide is produced by utilizing an oxygen carrier in the fuel reactor for reduction reactions. In this study, Iron-Magnesium-Aluminum (FMA) oxygen carrier was prepared and evaluated for the combustion of algae and algae-polypropylene(PP) in a fixed bed reactor.
    The prepared FMA oxygen carrier, with a metal molar ratio of iron, magnesium, and aluminum of 6:1:3 (FMA613), exhibited good reactivity and recyclability when calcined at 1000°C for 4 hours. XRD phase analysis revealed that the main phase of the oxygen carrier was MgFe2O4 with a spinel structure. On the other hand, the reduction kinetics of FMA613-1000-4 oxygen carrier in a hydrogen atmosphere followed the R3 model, with a reduction activation energy of 17.27 kJ/mol.
    In the CLC process of FMA613-1000-4 oxygen carrier with algae. The optimal conditions for the combustion of algae were an operating temperature of 900 °C, OC/F of 15, and a flow rate of 500 mL/min. In the combustion of algae and PP, the influence of flow rate was insignificant, while the optimal conditions were operating temperature of 950 ℃ and OC/F of 17. In the recycle test experiments, the system remained stable after four cycles. In terms of NOx emissions, it was preliminarily observed that Fe4N intermediate. Regarding SO2 emissions, it was found that under excess oxygen, gradual oxidation of SO2 to SO3 occurred, resulting in a decrease in SO2 outlet concentration.

    中文摘要 I Abstract III Acknowledgment V Table of Contents VII List of Figures XI List of Tables XV List of Symbols XVII Chapter 1 Introduction 1 1.1 Background 1 1.2 Objective and Scope 3 Chapter 2 Literature and Review 5 2.1 Introduction of Chemical Looping Processes 5 2.1.1 Chemical Looping Combustion 6 2.1.2 Biomass as Fuel in Chemical Looping Combustion 8 2.1.3 Plastics as Fuel in Chemical Looping Combustion 10 2.1.4 NOx Formation in Chemical Looping Process 12 2.1.5 SO2 Formation in Chemical Looping Process 14 2.2 Mechanism of Solid Fuel in Chemical Looping Process 17 2.2.1 Pyrolysis of Algae 18 2.2.2 Chemical Looping Process with Algae 20 2.2.3 Chemical Looping Process with Algae and PP 21 2.3 Preparation and Performance of Oxygen Carriers 24 2.3.1 Development of the Iron-Based Oxygen Carriers 25 2.3.2 Fe-Based Oxygen Carriers with as a Support Material 27 2.3.3 Effect of Calcination Condition on Oxygen Carriers 31 2.3.4 Reduction Kinetic Models of Oxygen Carriers 32 2.4 Operating Parameters for Chemical Looping Combustion 36 2.4.1 Effect of Operating Temperature 36 2.4.2 Effect of Oxygen Carriers to Solid Fuel Ratio 38 2.4.3 Effect of Flow Rate to Solid Fuel Ratio 39 Chapter 3 Materials and Experiments 41 3.1 Materials 41 3.2 Apparatus and Instruments 42 3.3 Experimental Procedures 42 3.3.1 Experiment Framework 43 3.3.2 Preparation and Characterization of Oxygen Carriers 45 3.3.4 Performance of Chemical Looping Process 51 3.3.5 Method of Analysis Fuel 55 Chapter 4 Results and Discussion 59 4.1 Performance of Oxygen Carriers 59 4.1.1 Reactivity and Redox Cyclability of Oxygen Carriers 59 4.1.2 Redox Cyclability Test of Oxygen Carriers 65 4.1.3 Characterization of Oxygen Carriers 67 4.1.3 Attrition of Oxygen carriers 73 4.1.4 Reduction Mechanism of Oxygen Carriers 75 4.1.5 Kinetic Models for Reduction of Oxygen Carriers 77 4.2 Chemical Looping Combustion of Algae 81 4.2.1 Thermal Gravimetric Characterization of Algae 83 4.2.2 Effect of Operating Temperature 85 4.2.3 Effect of Oxygen Carrier to Solid Fuel Ratio 88 4.2.4 Effect of Flow Rate 93 4.2.5 Recycle test 97 4.3 Chemical Looping Combustion of Algae with PP 99 4.3.1 Effect of Operating Temperature 102 4.3.2 Effect of Oxygen Carrier to Solid Fuel Ratio 107 4.3.3 Effect of Flow Rate 110 4.3.4 Recycle Test 113 4.4 Comparison of Algae and Algae/PP in Chemical Looping Combustion 115 4.4.1 Performance of Carbonaceous Gas 115 4.4.2 SO2 and NOx Evaluation 117 Chapter 5 Conclusions and Recommendations 118 5.1 Conclusions 119 5.2 Recommendations 122 References 124 Appendix 135

    Abad, A., García-Labiano, F., de Diego, L. F., Gayán, P., and Adánez, J. “Reduction Kinetics of Cu-, Ni-, and Fe-based Oxygen Carriers using Syngas (CO+ H2) for Chemical-Looping Combustion,” Energy Fuels., Vol. 21(4), pp. 1843-1853 (2007).
    Abad, A., Adanez, J., Cuadrat, A., Garcia-Labiano, F., Gayan, P., and Luis, F., “Kinetics of Redox Reactions of Ilmenite for Chemical-Looping Combustion,” Chem. Eng. Sci., Vol. 66(4), pp. 689-702 (2011).
    Azimi, G., Leion, H., Rydén, M., Mattisson, T., and Lyngfelt, A. “Investigation of Different Mn–Fe Oxides as Oxygen Carrier for Chemical-Looping with Oxygen Uncoupling (CLOU),” Energy Fuels., Vol. 27(1), pp. 367-377 (2013).
    Adánez-Rubio, I., Pérez-Astray, A., Mendiara, T., Izquierdo, M. T., Abad, A., Gayán, P., Diego. L.F., García-Labiano. F., and Adánez, J. “Chemical Looping Combustion of Biomass: CLOU Experiments with a Cu-Mn Mixed Oxide,” Fuel Process. Technol., Vol. 172, pp. 179-186 (2018).
    Bi, W., Chen, T., Zhao, R., Wang, Z., Wu, J., and Wu, J. “Characteristics of a CaSO4 Oxygen Carrier for Chemical-Looping Combustion: Reaction with Polyvinylchloride Pyrolysis Gases in a Two-Stage Reactor,” RSC Adv., Vol. 5(44), pp. 34913-34920 (2015).
    Cho, P., Mattisson, T., and Lyngfelt, A. “Reactivity of Iron Oxide with Methane in a Laboratory Fluidized Bed: Application of Chemical-Looping Combustion,” The 7. international conference on circulating fluidized bed technology. pp. 599-606 (2002).
    Campanella, A., Muncrief, R., Harold, M. P., Griffith, D. C., Whitton, N. M., and Weber, R. S. “Thermolysis of Microalgae and Duckweed in a CO2-Swept Fixed-Bed Reactor: Bio-Oil Yield and Compositional Effects,” Bioresour. Technol., Vol. 109, pp. 154- 162 (2012).
    Cuadrat, A., Abad, A., García-Labiano, F., Gayán, P., de Diego, L. F., and Adánez, J. “Effect of operating conditions in Chemical-Looping Combustion of coal in a 500 Wth unit,” Int. J. Greenh. Gas Control., Vol. 6, pp. 153-163 (2012).
    Chiu, P. C., Ku, Y., Wu, H. C., Kuo, Y. L., and Tseng, Y. H. “Chemical Looping Combustion of Polyurethane and Polypropylene in an Annular Dual-Tube Moving Bed Reactor with Iron-Based Oxygen Carrier,” Fuel., Vol. 135, pp. 146-152 (2014).
    Cheng, M., Normann, F., Zhao, D., Li, Z., Cai, N., and Leion, H., “Oxidation of Ammonia by Ilmenite under Conditions Relevant to Chemical-Looping Combustion,” Energy Fuels., Vol. 29(12), pp. 8126-8134 (2015).
    Chen, W., Yang, H., Chen, Y., Xia, M., Chen, X., and Chen, H. “Transformation ofNitrogen and Evolution of N-Containing Species during Algae Pyrolysis,” Environ. Sci. Technol., Vol. 51(11), pp. 6570-6579. (2017).
    Coppola, A., and Scala, F. “Chemical looping for combustion of solid biomass: A review,” Energy Fuels., Vol. 35(23), pp. 19248-19265 (2021).
    Cheng, Z., Zhang, L., Jin, N., Zhu, Y., Chen, L., Yang, Q., Yan, M., Ma, X., and Wang, X., “Effect of Calcination Temperature on the Performance of Hexaluminate Supported CeO2 for Chemical Looping Dry Reforming,” Fuel Process. Technol., Vol. 218, pp. 106873 (2021).
    De Diego, L. F., Gayán, P., García-Labiano, F., Celaya, J., Abad, A., and Adánez, J. “Impregnated CuO/Al2O3 Oxygen Carriers for Chemical-looping Combustion: Avoiding Fluidized Bed Agglomeration,” Energy Fuels., Vol. 19(5), pp. 1850-1856 (2005).
    Debiagi, P. E. A., Trinchera, M., Frassoldati, A., Faravelli, T., Vinu, R., and Ranzi, E., “Algae characterization and multistep pyrolysis mechanism,” JAAP, Vol. 128, pp. 423-436 (2017).
    El-Geassy, A. A. “Influence of Doping with CaO and/or MgO on Stepwise Reduction of Pure Hematite Compacts,” Ironmak. Steelmak., Vol. 26(1), pp. 41-52. (1999).
    Fang, H., Haibin, L., and Zengli, Z. “Advancements in Development of Chemical-Looping Combustion: A Review,” Int. J. Chem. Eng., (2009).
    Fan, Y., Tippayawong, N., Wei, G., Huang, Z., Zhao, K., Jiang, L., Zheng, A., Zhao, Z., and Li, H., “Minimizing Tar Formation whilst Enhancing Syngas Production by Integrating Biomass Torrefaction Pretreatment with Chemical Looping Gasification,” Appl. Energy., Vol. 260, pp. 114315 (2020).
    Fan, Q., Huang, C., Xi, S., Yan, Y., Huang, J., Saqline, S.,Tao, L., Dai, Y., Borgna, A., Wang, X., and Liu, W., “Breaking the Stoichiometric Limit in Oxygen-Carrying Capacity of Fe-Based Oxygen Carriers for Chemical Looping Combustion using the Mg-Fe-O Solid Solution System,” ACS Sustain. Chem. Eng., Vol.10, pp. 7242-7252 (2022).
    García-Labiano, F., de Diego, L. F., Gayan, P., Adanez, J., Abad, A., and Dueso, C. “Effect of Fuel Gas Composition in Chemical-Looping Combustion with Ni-Based Oxygen Carriers. 1. Fate of Sulfur,” Ind. Eng. Chem. Res., Vol. 48(5), pp. 2499-2508 (2009).
    Gu, H., Shen, L., Xiao, J., Zhang, S., and Song, T. “Chemical Looping Combustion of Biomass/Coal with Natural Iron Ore as Oxygen Carrier in a Continuous Reactor,” Energy Fuels., Vol. 25(1), pp. 446-455 (2011).
    Gu, H., Shen, L., Zhong, Z., Niu, X., Ge, H., Zhou, Y., Xiao, S., and Jiang, S., “NO Release during Chemical Looping Combustion with Iron Ore as an Oxygen Carrier,” Chem. Eng. J., Vol. 264, pp. 211-220 (2015).
    Gu, H., Shen, L., Zhong, Z., Zhou, Y., Liu, W., Niu, X., and Wang, L. “Interaction Between Biomass Ash and Iron Ore Oxygen Carrier during Chemical Looping Combustion,” J. Chem. Eng., Vol. 277, pp. 70-78 (2015).
    Gao, Y., Tahmasebi, A., Dou, J., and Yu, J., “Combustion Characteristics and Air Pollutant Formation During Oxy-Fuel Co-Combustion of Microalgae and Lignite,” Bioresour. Technol., Vol. 207, pp. 276-284 (2016).
    He, F., Wang, H., and Dai, Y. “Application of Fe2O3/Al2O3 Composite Particles as Oxygen Carrier of Chemical Looping Combustion,” J. Nat. Gas Chem., Vol. 16(2), pp. 155-161 (2007).
    Hossain, M. M., and de Lasa, H. I. “Chemical-Looping Combustion (CLC) for Inherent CO2 Separations—A Review,” Chem. Eng. Sci., Vol. 63(18), pp. 4433-4451 (2008).
    Hunt, J., Ferrari, A., Lita, A., Crosswhite, M., Ashley, B., and Stiegman, A. E., “Microwave-Specific Enhancement of the Carbon–Carbon Dioxide (Boudouard) Reaction,” J. Phys. Chem. C, Vol. 117(51), pp. 26871-26880 (2013).
    Hu, J., Galvita, V. V., Poelman, H., and Marin, G. B., “Advanced Chemical Looping Materials for CO2 Utilization: A Review,” Materials., Vol. 11(7), pp. 1187 (2018).
    Ishida, M., Zheng, D., and Akehata, T. “Evaluation of a Chemical-Looping-Combustion Power-Generation System by Graphic Exergy Analysis,” Energy, Vol. 12(2), pp. 147-154 (1987).
    Ishida, M., Jin, H., and Okamoto, T., “Kinetic Behavior of Solid Particle in Chemical-Looping Combustion: Suppressing Carbon Deposition in Reduction.” Energy Fuels., Vol. 12(2), pp.223-229 (1998).
    Iliuta, I., Tahoces, R., Patience, G. S., Rifflart, S., and Luck, F., “Chemical‐Looping Combustion Process: Kinetics and Mathematical Modeling,” AIChE J., Vol. 56(4), pp. 1063-1079 (2010).
    Johansson, M., Mattisson, T., and Lyngfelt, A., “Investigation of Fe2O3 with MgAl2O4 for Chemical-Looping Combustion,” Ind. Eng. Chem. Res., Vol. 43(22), pp. 6978-6987 (2004).
    Jing, D., Snijkers, F., Hallberg, P., Leion, H., Mattisson, T., and Lyngfelt, A. “Effect of Production Parameters on the spray-Dried Calcium Manganite Oxygen Carriers for Chemical-Looping Combustion,” Energy Fuels., Vol. 30(4), pp. 3257-3268. (2016).
    Jabeen, S., Gao, X., Altarawneh, M., Hayashi, J. I., Zhang, M., and Dlugogorski, B. Z. “Analytical Procedure for Proximate Analysis of Algal Biomass: Case Study for Spirulina Platensis and Chlorella Vulgaris,” Energy Fuels, Vol. 34(1), pp. 474-482 (2019).
    Jiang, H., Huo, R., Zhang, Z., Lin, Y., Zhao, Z., Huang, Z., Fang, Y., and Li, H., “Removal of Pollution from the Chemical Looping Process: A Mini Review,” Fuel Process. Technol., Vol. 221, pp. 106937 (2021).
    Khakpoor, N., Mostafavi, E., Mahinpey, N., and De la Hoz Siegler, H. “Oxygen Transport Capacity and Kinetic Study of Ilmenite Ores for Methane Chemical-Looping Combustion,” Energy, Vol. 169, pp. 329-337 (2019).
    Leion, H., Lyngfelt, A., Johansson, M., Jerndal, E., & Mattisson, T., “The Use of Ilmenite as an Oxygen Carrier in Chemical-Looping Combustion,” Chem Eng Res Des., Vol. 86(9), pp. 1017-1026 (2008).
    López-González, D., Fernandez-Lopez, M., Valverde, J. L., and Sanchez-Silva, L., “Kinetic Analysis and Thermal Characterization of the Microalgae Combustion Process by Thermal Analysis Coupled to Mass Spectrometry,” Appl. Energy., Vol. 114, pp. 227-237 (2014).
    Lahijani, P., Zainal, Z. A., Mohammadi, M., and Mohamed, A. R., “Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review,” Renewable Sustainable Energy Rev., Vol. 41, pp. 615-632 (2015).
    Lin, Y., Wang, H., Wang, Y., Huo, R., Huang, Z., Liu, M., Wei, G., Zhao, Z., Li, H., and Fang, Y., “Review of Biomass Chemical Looping Gasification in China,” Energy Fuels, Vol. 34(7), pp. 7847-7862 (2020).
    Lyngfelt, A., “Chemical Looping Combustion: Status and Development Challenges,” Energy Fuels., Vol, 34(8), pp. 9077-9093 (2020).
    Luo, M., Zhou, L., Cai, J., Zhang, H., and Wang, C. “Migration of Sulfur in In-Situ Gasification Chemical Looping Combustion of Beisu Coal with Iron and Copper-Based Oxygen Carriers,” Chin. J. Chem. Eng., Vol. 35, pp. 247-255 (2021).
    Mattisson, T., Johansson, M., and Lyngfelt, A., “Multicycle Reduction and Oxidation of Different Types of Iron Oxide Particles Application to Chemical-Looping Combustion,” Energy Fuels., Vol. 18(3), pp. 628-637 (2004).
    Mata, T. M., Martins, A. A., and Caetano, N. S., “Microalgae for Biodiesel Production and Other Applications: A Review,” Renew. Sust. Energ. Rev., Vol. 14, pp. 217-232 (2010).
    Moghtaderi, B. “Review of the Recent Chemical Looping Process Developments for Novel Energy and Fuel Applications,” Energy Fuels, Vol. 26(1), pp. 15-40 (2011).
    Miller, D. D., Siriwardane, R., and Poston, J. “Fluidized-Bed and Fixed-Bed Reactor Testing of Methane Chemical Looping Combustion with MgO-Promoted Hematite,” Appl. Energy, Vol, 146, pp. 111-121 (2015).
    Mattisson, T., Keller, M., Linderholm, C., Moldenhauer, P., Ryden, M., Leion, H., and Lyngfelt, A., “Chemical-Looping Technologies using Circulating Fluidized Bed Systems: Status of Development,” Fuel Process. Technol., Vol. 172, pp. 1-12 (2018).
    Ma, Z., Zhang, S., and Xiao, R. “Insights into the Relationship between Microstructural Evolution and Deactivation of Al2O3 Supported Fe2O3 Oxygen Carrier in Chemical Looping Combustion,” Energy Convers. Manag., Vol. 188, pp.429-437 (2019).
    Ma, Z., Liu, G., Zhang, H., and Lu, Y., “Investigation of the Redox Performance of Pyrite Cinder Calcined at Different Temperature in Chemical Looping Combustion,” Chin. J. Chem. Eng., Vol. 48, pp. 98-105 (2022).
    Ma, J., Xu, J., Liu, C., Yi, Q., Zheng, M., Cheng, L., and Song, T. “Chemical Looping Combustion of Sulfur Paste to SO2 by Phosphogypsum Oxygen Carrier for Sulfur Acid Production,” Fuel, Vol. 323, pp. 124386 (2022).
    Ma, Z., Liu, G., Lu, Y., and Zhang, H., “Redox Performance of Fe2O3/Al2O3 Oxygen Carrier Calcined at Different Temperature in Chemical Looping Process,” Fuel, Vol. 310, pp. 122381 (2022).
    Mayrhuber, S., Normann, F., Yilmaz, D., and Leion, H., “Effect of the Oxygen Carrier Ilmenite on NOx Formation in Chemical-Looping Combustion,” Fuel Process. Technol., Vol. 222, pp. 106962 (2021).
    Nandy, A., Loha, C., Gu, S., Sarkar, P., Karmakar, M. K., and Chatterjee, P. K. “Present Status and Overview of Chemical Looping CombustionTechnology,” Renew. Sust. Energ. Rev., Vol. 59, pp. 597-619 (2016).
    Qian, J. B., Wang, X. L., and Wang, J. X. “Emission Characteristics of Flue Gas during the Chemical-Looping Combustion Process for Multi-Component Solid Waste,” Clean Energy., Vol. 6(6), pp. 840-847 (2022).
    Ross, A. B., Anastasakis, K., Kubacki, M., and Jones, J. M. “Investigation of The Pyrolysis Behaviour of Brown Algae before and after Pre-Treatment using PY-GC/MS And TGA,” JAAP., Vol. 85(1-2), pp. 3-10 (2009).
    Song, Q., Xiao, R., Deng, Z., Zhang, H., Shen, L., Xiao, J., and Zhang, M. “Chemical-Looping Combustion of Methane with CaSO4 Oxygen Carrier in a Fixed Bed Reactor,” Energy Convers. Manag., Vol. 49(11), pp. 3178-3187 (2008).
    Shulman, A., Cleverstam, E., Mattisson, T., and Lyngfelt, A., “Manganese/Iron, Manganese/Nickel, and Manganese/Silicon Oxides Used in Chemical-Looping with Oxygen Uncoupling (CLOU) for Combustion of Methane,” Energy Fuels., Vol. 23(10), pp. 5269-5275 (2009).
    Shen, L., Wu, J., Xiao, J., Song, Q., and Xiao, R. “Chemical-looping combustion of biomass in a 10 kWth reactor with iron oxide as an oxygen carrier,” Energy Fuels., Vol. 23(5), pp. 2498-2505 (2009).
    Sun, Y., Li, R., Yang, T., Kai, X., and He, Y., "Gasification of Biomass to Hydrogen-Rich Gas in Fluidized Beds using Porous Medium as Bed Material," Int. J. Hydrog. Energy, Vol. 38, pp. 14208-14213 (2013).
    Song, T., Shen, T., Shen, L., Xiao, J., Gu, H., and Zhang, S. “Evaluation of Hematite Oxygen Carrier in Chemical-Looping Combustion of Coal,” Fuel, Vol. 104, pp. 244-252 (2013).
    Verhulst, D., Buekens, A., Spencer, P. J., and Eriksson, G. “Thermodynamic Behavior of Metal Chlorides and Sulfates under the Conditions of Incineration Furnaces,” Environ. Sci. Technol., Vol. 30(1), pp. 50-56(1995).
    Wang, B., Lv, H., Zhao, H., and Zheng, C. "Experimental and Simulated Investigation of Chemical Looping Combustion of Coal with Fe2O3 based Oxygen Carrier," Procedia Eng., Vol. 16, pp. 390-395. (2011).
    Wang, J., and Zhao, H. “Chemical Looping Dechlorination through Adsorbent-Decorated Fe2O3/Al2O3 Oxygen Carriers,” Combustion and Flame, Vol. 162(10), 3503-3515 (2015).
    Wang, J., and Zhao, H. “Evaluation of CaO-Decorated Fe2O3/Al2O3 as an Oxygen Carrier for In-Situ Gasification Chemical Looping Combustion of Plastic Wastes,” Fuel, Vol. 165, pp. 235-243 (2016).
    Wang, J., and Zhao, H. “Application of CaO-decorated iron ore for inhibiting chlorobenzene during in situ gasification chemical looping combustion of plastic waste,” Energy Fuels., Vol. 30(7), 5999-6008 (2016).
    Wang, S., Song, T., Yin, S., Hartge, E. U., Dymala, T., Shen, L., Heinrich. S., and Werther, J., “Syngas, Tar and Char Behavior in Chemical Looping Gasification of Sawdust Pellet in Fluidized Bed,” Fuel, Vol. 270, pp. 117464 (2020).
    Wang, H., Liu, G., Veksha, A., Dou, X., Giannis, A., Lim, T. T., and Lisak, G. “Iron ore Modified with Alkaline Earth Metals for the Chemical Looping Combustion of Municipal Solid Waste Derived Syngas,” J. Clean. Prod., Vol. 282, pp. 124467 (2021).
    Wang, H., Liu, G., Veksha, A., Giannis, A., Lim, T. T., and Lisak, G. “Effective H2S Control during Chemical Looping Combustion by Iron Ore Modified with Alkaline Earth Metal Oxides,” Energy, Vol. 218, pp. 119548 (2021).
    Yu, Z., Yang, Y., Yang, S., Zhang, Q., Zhao, J., Fang, Y., Hao, X., and Guan, G., “Iron-Based Oxygen Carriers in Chemical Looping Conversions: A Review,” Carbon Resour. Convers., Vol. 2, pp. 23-34 (2019).
    Yang, C., Li, R., Zhang, B., Qiu, Q., Wang, B., Yang, H., and Wang, C. “Pyrolysis of Microalgae: A Critical Review,” Fuel Process. Technol., Vol. 186, pp. 53-72 (2019).
    Yan, B., Li, Z., Jiao, L., Li, J., Chen, G., and Yang, G. “Chemical Looping Gasification of Chlorella: Parametric Optimization, Reaction Mechanisms, and Nitrogen-Containing Pollutants Emission,” Fuel, Vol. 289, pp. 119987 (2021).
    Yaqub, Z. T., Oboirien, B. O., Hedberg, M., and Leion, H. “Experimental Evaluation using Plastic Waste, Paper Waste, and Coal as Fuel in a Chemical Looping Combustion Batch Reactor,” Chem. Eng. Technol., Vol. 44(6), pp. 1075-1083 (2021).
    Yan, J., Lai, J., Yin, K., Yan, Y., Shen, L., and Yang, L. “Syngas Production and Gas-N Evolution over Heterogeneously Doped La-Fe-O Perovskite-Type Oxygen Carriers in Chemical Looping Gasification of Microalgae,” Bioresource Technology, Vol. 369, pp. 128507 (2023).

    QR CODE