簡易檢索 / 詳目顯示

研究生: 白奇哲
Chi-Che Pai
論文名稱: 摻鉺光纖放大器的極化模態色散
Polarization Mode Dispersion of an Erbium-Doped Fiber Amplifier
指導教授: 譚昌文
Chen-Wen Tarn
口試委員: 黃柏仁
Bohr-Ran Huang
陳鴻興
Hung-Shing Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 48
中文關鍵詞: 極化模態色散摻鉺光纖放大器
外文關鍵詞: Polarization Mode Dispersion, Erbium-Doped Fiber Amplifier
相關次數: 點閱:243下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,提出一個以Mueller matrix為架構的數學模型來評估摻鉺光纖大器(erbium-doped fiber amplifier)的極化模態色散(polarization mode dispersion, PMD),摻鉺光纖大器透過泵機光源的調變後,會使自發性放射的能階帶具有調變訊號的特性,調變後的自發性放射可作為監控訊號光源以對於線上的量測極化模態色散。在本篇題出的數學模型中,使用方法皆為頻率領域(frequency domain),省去了時間領域(time domain)方法的實驗架構不易安裝之缺點,透過數學模型配合瓊斯矩陣特徵值法(Jones matrix eigenvalue method)計算出的群速延遲差(differential group delay, DGD),再以實驗邦加球法(Poincare’ arc method)驗證數學模型的正確性。
    在實驗中,先固定入射光的極化狀態為線性60度,入射至摻鉺光纖大器的波長範圍在1542nm-1566nm之間,藉由量測所得的數據,運用至邦加球法中再跟極化分析儀所量得極化模態色散相以佐證。


    In this paper, a mathematical model is proposed to evaluate the polarization mode dispersion (PMD) of erbium-doped fiber amplifier based on Mueller matrix. A Erbium-doped fiber amplifier (EDFA) modulated by a pumping source cause the energy gap of amplified spontaneous emission (ASE) getting the characteristic of modulating signal.
    The modulated amplified spontaneous emission can be the polarization mode dispersion monitoring system. All the methods we used are based on frequency domain. It is better than the approaches based on time domain, due to the fact that the experimental structure is convenient. The differential group delay (DGD) we calculated by Jones matrix eigenvalue method can be proved by the Poincare’ arc method using Poincare’ arc method.
    We fixed the polarization state of a tunable laser at 60 degree of linear polarization to incident in EDFA at the range of wavelength 1542nm-1566nm. The data we got from the experiment can be verified the polarization mode dispersion we measured.

    第一章 緒論 1 1.1 研究動機與目的 1 第二章 極化模態色散 2 2.1 極化 2 2.1.1 極化概念 2 2.1.2 極化程度 3 2.1.3 瓊斯向量 4 2.1.4 史托克參數 5 2.1.5 邦加球 6 2.2 極化模態色散特性 7 2.3 極化模態色散的量測 10 2.3.1 干涉法 11 2.3.2 光脈衝法 13 2.3.3 波長掃描法 14 2.3.4 瓊斯矩陣特徵值法 15 2.3.5 邦加球法 16 第三章 摻鉺光纖放大器 18 3.1摻鉺光纖放大器的基本原理 18 3.2 泵激光源與方式 19 3.3 增益頻譜與均勻調寬現象 21 3.4 增益特性 21 第四章 以Mueller matrix方法計算摻鉺光纖放大器的極化模態色散 23 4.1 數學模型的設立 23 4.2 極化模態色散實驗與模擬 27 第五章 結論與未來展望 33 參考文獻 34

    [1] C. D. Poole, and R. E. Wagner. "Phenomenological approach to polarisation dispersion in long single-mode fibers." Electronics Letters , vol. 22, pp. 1029-1030, 1986.
    [2] A. Yariv, and P. Yeh. Optical waves in crystals. Vol. 10. Wiley, New York, 1984.
    [3] A. Ghatak, and K. Thyagarajan. Optical electronics. Cambridge University Press, 1989.
    [4] D. Derickson, "Fiber optic test and measurement," in Fiber optic test and measurement/edited by Dennis Derickson. Upper Saddle River, NJ: Prentice Hall, c1998., 1998.
    [5] A. O. Dal Forno, A. Paradisi, R. Passy, and J. P. von der Weid, "Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers." IEEE Photonics Technology Letters, vol. 12, pp. 296-298, 2000.
    [6] N. Gisin and R. Passy. "Experimental investigations of the statistical properties of polarization mode dispersion in single mode fibers." IEEE Photonics Technology Letters , vol. 5, pp. 819-821, 1986.
    [7] R. E. Schuh and E. S. Sikora. "Theoretical analysis and measurement of effects of fibre twist on polarisation mode dispersion of optical fibres." Electronics Letters, vol. 31, pp. 1772-1773, 1995.
    [8] B. W. Hakki, "Polarization mode dispersion in a single mode fiber." Journal of Lightwave Technology , vol. 14, pp. 2202-2208, 1996.
    [9] G. J. Foschini and C. D. Poole. "Statistical theory of polarization dispersion in single mode fibers." Journal of Lightwave Technology , vol. 9, pp. 1439-1456, 1991.
    [10] R. Noe, D. Sandel, V. Mirvoda, F. Wust and S. Hinz, "Polarization mode dispersion detected by arrival time measurement of polarization-scrambled light." Journal of Lightwave Technology, vol. 20, pp. 229-235, 2002.
    [11] Y. Namihira, T. Kawazawa and H. Wakabayashi. "Polarization mode dispersion measurements in 1520 km EDFA system." Electronics Letters , vol. 28, pp 881-883, 1992.
    [12] Y. Namihira, and J. Maeda. "Comparison of various polarisation mode dispersion measurement methods in optical fibres." Electronics letters , vol. 28, pp. 2265-2266, 1992.
    [13] L. Moller and L. Buhl. "Method for PMD vector monitoring in picosecond pulse transmission systems." Journal of Lightwave Technology , vol. 19, pp. 1125-1129, 2001.
    [14] P. B. Phua, J. M. Fini and H. A. Haus. "Real-time first-and second-order PMD characterization using averaged state-of-polarization of filtered signal and polarization scrambling." Journal of Lightwave Technology , vol. 21, pp. 982-989, 2003.
    [15] F. Buchali and H. Bulow. "Adaptive PMD compensation by electrical and optical techniques." Journal of Lightwave Technology , vol. 22, pp. 1116-1126, 2004.
    [16] F. Bruyere, "Impact of first-and second-order PMD in optical digital transmission systems." Optical Fiber Technology , pp. 269-280, 1996.
    [17] P. Oswald, C. K. Madsen and R. L. Konsbruck. "Analysis of scalable PMD compensators using FIR filters and wavelength-dependent optical power measurements." Journal of Lightwave Technology , vol. 22, pp. 647-657, 2004.
    [18] X. Dong, N. Q. Ngo, P. Shum, J. H. Ng, X. Yang, G. Ning and C. Lu, "Tunable compensation of first-order PMD using a high-birefringence linearly chirped fiber Bragg grating." IEEE Photonics Technology Letters , vol. 16, pp. 846-848, 2004.
    [19] H. Sunnerud, C. Xie, M. Karlsson, R. Samuelsson and P. A. Andrekson, "A comparison between different PMD compensation techniques." Journal of Lightwave Technology , vol. 20, pp. 368-378, 2002.
    [20] A. Eyal and A. Yariv. "Design of broad-band PMD compensation filters." IEEE Photonics Technology Letters , vol. 14, pp. 1088-1090, 2002.
    [21] R. Noé, D. Sandel, M. Yoshida-Dierolf, S. Hinz, V. Mirvoda, A. Schopflin, C. Glingener, E. Gottwald, C. Scheerer, G. Fisher, T. Weyrauch and W. Hass, "Polarization mode dispersion compensation at 10, 20, and 40 Gb/s with various optical equalizers." Journal of Lightwave Technology , vol. 17, pp. 1602-1616, 1999.
    [22] L. Moller, "Filter synthesis for broad-band PMD compensation in WDM systems." IEEE Photonics Technology Letters , vol. 12, pp. 1258-1260, 2000.
    [23] M. Sharma, H. Ibe and T. Ozeki. "Optical circuits for equalizing group delay dispersion of optical fibers." Journal of Lightwave Technology , vol. 12, pp. 1759-1765, 1994.
    [24] S. Huard, "Polarization of light," Polarization of Light, by Serge Huard, vol. 1, pp. 348, 1997.
    [25] M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and the Diffraction of Light, 7th ed., Cambridge University Press, New York, 1999.
    [26] C.-W. Tarn, R.-S. Huang, and C.-W. Hsieh, "Polarization changing and beam profile deformation of light during the isotropic Raman–Nath acousto-optic interaction," Applied optics, vol. 37, pp. 7496-7503, 1998.
    [27] S. B. William and M. B. William, "Stokes vectors, Mueller matrices, and polarized scattered light," American Journal of Physics, vol. 53, pp. 468-478, 1985.
    [28] R. M. Azzam and N. M. Bashara, Ellipsometry and polarized light: North-Holland. sole distributors for the USA and Canada, Elsevier Science Publishing Co., Inc., 1987.
    [29] D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized light in optics and spectroscopy. Academic Press, New York, 1990.
    [30] 廖顯奎, 徐桂珠, 許光裕, 當代光纖通訊, 高立圖書有限公司, 2012.
    [31] S. C. Rashleigh, "Origins and control of polarization effects in single-mode fibers," Journal of Lightwave Technology ., vol. 1, pp312-331, 1983.
    [32] Y. Namihira, and J. Maeda. "Comparison of various polarization mode dispersion measurement methods in optical fibers." Electronics. Letters., vol. 28, pp. 2265-2266, 1992.
    [33] C. D. Poole and D. L. Favin. "Polarization mode dispersion measurements based on transmission spectra through a polarizer," Journal of Lightwave Technology., vol. 12, pp. 917-929, 1994.
    [34] P. A. Williams, and C. M. Wang. "Corrections to fixed analyzer measurements of polarization mode dispersion." Journal of Lightwave Technology., vol. 16, pp.534-541, 1998.
    [35] R. C. Jones. "A New Calculus for the Treatment of Optical Systems. VI. Experimental determination of the matrix," JOSA., vol. 37, pp. 110-112, 1947.
    [36] B. I. Heffner. "Automated measurement of polarization mode dispersion using Jones matrix eigen analysis." IEEE Photonics Technology Letters., vol. 4, pp. 1066-1069, 1992.
    [37] 李揚漢, 許立根, 譚昌文, 洪鴻文, 曹士林, 楊淳良, et al., 光纖通訊網路, 2007.
    [38] M. P. Becker., A. A. Olsson, and J. R. Simpson. Erbium-doped fiber amplifiers: fundamentals and technology. Academic press, 1999.
    [39] E. Desurvire, J. L. Zyskind, and J. R. Simpson. "Spectral gain hole-burning at 1.53 mu m in erbium-doped fiber amplifiers." IEEE Photonics Technology Letters , vol. 2, pp. 246-248, 1990.
    [40] J. L. Wagener, D. G. Falquier, M. J. F. Digonnet, and H. J. Shaw. "A Mueller matrix formalism for modeling polarization effects in erbium-doped fiber." Journal of Lightwave Technology , vol. 16, 1998.
    [41] R. M. A. Azzam, and N. M Bashara. Ellipsometry and polarized light. North-Holland, Netherlands, 1989.

    無法下載圖示 全文公開日期 2017/08/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE