簡易檢索 / 詳目顯示

研究生: 林怡丞
Yi-Cheng Lin
論文名稱: 大學校園建築空調系統之節能手法與節能效益評估-以台灣科技大學建築系為例
University campus building facilities of air conditioning system energy saving techniques and energy efficiency assessment-A case study of Department of Architecture, NTUST
指導教授: 杜功仁
Kung-Jen Tu
口試委員: 江維華
none
邱韻祥
none
學位類別: 碩士
Master
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 65
中文關鍵詞: 政府機關節能成本空調自動斷電裝置斷電週期
外文關鍵詞: government, energy efficiency data, air conditioning automatic shut-down devices, shut-down cycle
相關次數: 點閱:253下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年政府期望率先由政府機關進行節約能源之推動執行,但欲進行節能之大學校園卻無法得知政府所推廣之節能手法之成本與其節能效益。在無法得知政府所推廣之節能手法之成本與其節能效益之下,如台灣大學、台灣科技大學等大學校園於校園內之大樓內安裝空調自動斷電裝置,但此節能手法缺乏文獻之研究成果可證實有顯著之節能效益。
    有鑑於空調節能手法之重要性,本研究目的為:(1)彙整國內外文獻,提出空調系統相關設備可行之節能手法與節能潛力;(2)以台科大建築系各樓層為例,評估空調自動斷電裝置之節能效益;(3)以台科大建築系教師辦公室、研究室為例,探討於不同斷電週期下其節能效益差異,並提出建議。
    本研究彙整國內外空調系統設備之節能文獻,結果顯示中央空調系統於各設備安裝變頻驅動器,節能潛力約8.6~19.7%、更改冰水主機之冷卻水出水溫度設定,節能潛力18.2%、冰水主機安裝水霧系統,節能潛力14.1%、以電腦控制多台冰水主機,節能潛力7%、各空調系統設備汰舊換新,節能潛力23~30%、移動冷卻水塔至通風處,節能潛力6%。分離式空調系統之節能文獻彙整後,結果顯示安裝變頻驅動器,節能潛力10%、安裝水霧系統,節能潛力4~15%、增加多台室外機相互間之距離,節能潛力18%、安裝空調自動斷電裝置,節能潛力未知。
    接著本研究以台科大建築系各樓層為例,探討空調自動斷電裝置之安裝對於建築系館各樓層之空調耗電量節能效益。結果可發現七、八、九樓之節能效益皆不顯著,在安裝前、後之外氣溫度無明顯之落差下,各樓層節能效益皆不顯著顯示空調自動斷電裝置並未能有效的進行節能。
    最後本研究以台科大建築系教師辦公室、研究室為例,探討空調自動斷電裝置於不同斷電週期控制對空間內空調耗電量影響。結果斷電週期三小時之教師辦公室RB905節能22%有顯著之節能效益,相較之下斷電週期一小時之研究室RB906節能效益不顯著,顯示斷電週期之不同影響節能效益之優劣。
    本研究亦建議未來大學校園可將空調自動斷電裝置分為以下幾種控制方式:(1)所有空間之斷電週期皆改為三小時或以上。(2)與照明開關連結,照明開啟則代表有人員使用,而不啟動自動斷電週期,於照明關閉後一定時間內再開始啟動自動斷電週期功能。(3)於表訂上班時間之間不啟動自動斷電週期,至下班時間再開始啟動自動斷電週期功能。


    In recent years the Taiwanese government plans to establish and execute the policies about energy saving. However, the government fails to offer enough information of the cost of energy-saving techniques and its energy efficiency data, and many colleges, such as National Taiwan University (NTU) and National Taiwan University of Science and Technology (NTUST) are forced to use the air conditioning automatic shut-down devices (ACASDs), which lake of scientific evidence.
    In view of the importance of air-conditioning energy-saving techniques, the motives of our research focus on three parts: (1)Proposing energy saving techniques and the saving potential of air-conditioning systemswhile analyzing international and domesticscientific literatures. (2) Evaluating the energy efficiency of an ACASD(3) Discussing the relationship between theshut-down cycle of ACASD,and its energy efficiency.
    While analyzing several scientific literaturesabout air-conditioning system, the results showed that the saving potential of avariable frequency drive (VFD) in acentral air conditioning system is 8.6 to 19.7 %; 18.2 % for the cooling water setting ofachiller system, 14.1% for awater mist system, 7 % for a controlled water mist, 23 to 30 % for anew air conditioning system, and 6 % for aventilated cooling tower. Additionally, while analyzing scientific literatures about split air-conditioning system, the saving potential is determined to be 10% for a VFD and 4 to 15% for a water mist system. When increasing the distance between outdoor compressors, the saving potential becomes to be 18%. Besides, the saving potential of an ACASD has not been determined yet.
    According to the datacollected from architecture department building at NTUST, the energy efficiency of an ACASD is negligible in 7th, 8th, and 9th floor. This explains that the effect of energy saving is measly when the air temperatures are comparable before and after the installation of an ACASD.This experiment alsoconcludes that an ACASD fails in energy saving.
    The relationship between the shut-down cycleand the depletion of electricity of an air-conditioning system was studied by using architecture department rooms. The results showed that the saving potential is 22% in RB905 with 3 hour shut-down cycle and negligible percent of saving potential in RB906 with 1 hour shut-down cycle. From such experiment, the relationship between energy efficiency andshut-down cycle of an ACASD can also be known.
    In order to increase the energy efficiency of an ACASD, we proposed that(1) the shut-down cycle of an ACASD should be increased to three hours or more (2) connecting an electric lighting switch with an ACASD. In addition, the two systems are designed to work at different time, and a time delay is required before the shut-down cycle beginswhen the electric lighting switch is off (3) the shut-down cycle operates during only working hours.

    摘要I AbstractIII 誌謝V 目錄VI 圖目錄IX 表目錄XI 第一章緒論1 1.1研究背景與動機1 1.2研究目的2 1.3研究方法與流程2 1.4名詞解釋3 第二章文獻回顧4 2.1政府推行之空調節能教育宣導相關文獻4 2.1.1空調系統負荷之改善4 2.1.2空調系統透過設備之改善4 2.1.3空調系統使用行為改善5 2.2國內外空調系統節能效益評估方式之研究5 2.2.1以功率曲線評估與最佳曲線之差異5 2.2.2以空調耗電量之差值評估節能前後之效益5 2.2.3以顯著性檢定評估節能效益是否顯著5 2.3小結6 第三章空調系統設備之節能手法彙整8 3.1節能手法之彙整方法8 3.1.2空調系統設備之運作原理簡介8 3.2中央空調系統之節能手法13 3.2.1冰水主機之節能手法13 3.2.2冷卻水塔之節能手法17 3.2.3冰水水泵、冷卻水泵之節能手法19 3.3分離式空調系統之節能手法20 3.3.1室外機之節能手法20 3.4小結24 第四章空調自動斷電裝置之節能效益評估25 4.1節能效益評估方法25 4.1.1台科大建築系館簡介25 4.1.2步驟一:訂定建築系館空調耗電量之量測範圍26 4.1.3步驟二:量測各樓層於安裝前、後之空調耗電量27 4.1.4步驟三:節能效益解析前之假設28 4.1.5步驟四:解析各樓層安裝空調自動斷電裝置之節能效益29 4.2建築系館於空調自動斷電裝置安裝後之節能效益解析29 4.2.1七樓節能效益評估30 4.2.2八樓節能效益評估31 4.2.3九樓節能效益評估32 4.3小結34 第五章空調自動斷電裝置於不同斷電週期之節能效益評估35 5.1不同斷電週期之節能效益評估方法35 5.1.1教師辦公室RB905、研究室RB906簡介35 5.1.2步驟一:訂定空調耗電量之量測範圍37 5.1.3步驟二:量測安裝前、後之空調耗電量37 5.1.4步驟三:節能效益解析前之假設38 5.1.5步驟四:解析不同斷電週期之節能效益38 5.2不同斷電週期之節能效益解析39 5.2.1斷電週期三小時之節能效益39 5.2.2斷電週期一小時之節能效益40 5.3小結與建議42 第六章結論與建議43 6.1結論43 6.2後續研究建議44 參考文獻45 附錄一 建築系館各樓層之工作日EUI與外氣溫度51 附錄二 教師辦公室、研究室之工作日EUI與外氣溫度53

    1.Alajmi, A. (2012). Energy audit of an educational building in a hot summer climate. Energy and Buildings, 47, 122-130.
    2.Cassidy, M. P., & Stack, J. F. (1988, September). Applying adjustable speed AC drives to cooling tower fans. In Petroleum and Chemical Industry Conference, 1988, Record of Conference Papers., Industrial Applications Society 35th Annual (pp. 87-90). IEEE.
    3.Chaktranond, C., & Doungsong, P. (2010). An Experimental Evaluation of Energy Saving in a Split-type Air Conditioner with Evaporative Cooling Systems.International transaction Journal of Engineering Management and Applied Sciences and Technologies, 1(1), 009-018.
    4.Chan , K.T. & Yu , F.W(2002).Applying condensing-temperature control in air-cooled reciprocating water chillers for energy efficiency. Applied Energy, 72, 565–581.
    5.Deng, S. M., & Burnett, J. (1997). Performance monitoring and measurement for central air conditioning chiller plants in buildings in Hong Kong. HKIE Transactions, 4(1), 7-12.
    6.Djuric, N., & Novakovic, V. (2012). Identifying important variables of energy use in low energy office building by using multivariate analysis. Energy and Buildings, 45, 91-98.
    7.Elsayed, A. O., & Hariri, A. S. (2011, May). Effect of condenser air flow on the performance of split air conditioner. In World renewable energy congress, Sweden (pp. 8-13).
    8.Goodarzi, M. (2010). A proposed stack configuration for dry cooling tower to improve cooling efficiency under crosswind. Journal of Wind Engineering and Industrial Aerodynamics, 98(12), 858-863.
    9.Gram-Hanssen, K., Christensen, T. H., & Petersen, P. E. (2012). Air-to-air heat pumps in real-life use: Are potential savings achieved or are they transformed into increased comfort?. Energy and Buildings.
    10.Ingels, Margaret. (1952). Willis Haviland Carrier : father of air conditioning. Garden City: Country Life Press.
    11.Jia Yang, Chan, K.T., Xiangsheng Wu, Yu , F.W & Xiaofeng Yang(2012). An analysis on the energy efficiency of air-cooled chillers with water mist system.Energy and Buildings, 55, 273–284.
    12.R. Saidur, M. Hasanuzzaman, T.M.I. Mahlia, N.A. Rahim & H.A. Mohammed (2011).Chillers energy consumption, energy savings and emission analysis in an institutional buildings.Energy, 36, 5233-5238.
    13.Russell, C. A. (2001). Michael Faraday: physics and faith. Oxford University Press.
    14.Saidur, R., Hasanuzzaman, M., Mahlia, T. M. I., Rahim, N. A., & Mohammed, H. A. (2011). Chillers energy consumption, energy savings and emission analysis in an institutional buildings. Energy, 36(8), 5233-5238.
    15.Shao, S., Shi, W., Li, X., & Chen, H.(2004). Performance representation of variable-speed compressor for inverter air conditioners based on experimental data. International journal of refrigeration, 27(8), 805-815.
    16.Shi, Y. L., Yang, L., & Zhang, C. L.(2011). Air management modeling of condensing units in a confined space and its impact on the chiller system performance. Energy and Buildings, 43(10), 2673-2677.
    17.Smrekar, J., Oman, J., & Širok, B. (2006). Improving the efficiency of natural draft cooling towers. Energy Conversion and Management, 47(9), 1086-1100.
    18.Tobi, T., & Hanafusa, T. (1991). A practical application of fuzzy control for an air-conditioning system. International Journal of approximate reasoning, 5(3), 331-348.
    19.Wang, S., & Burnett, J. (2001). Online adaptive control for optimizing variable-speed pumps of indirect water-cooled chilling systems. Applied thermal engineering, 21(11), 1083-1103.
    20.Yang, J., Chan, K. T., Wu, X., Yu, F. W., & Yang, X. (2012). An analysis on the energy efficiency of air-cooled chillers with water mist system. Energy and Buildings.
    21.Yao, Y., Lian, Z., Hou, Z., & Zhou, X.(2004). Optimal operation of a large cooling system based on an empirical model. Applied Thermal Engineering, 24(16), 2303-2321.
    22.Yik, F. W. H., Burnett, J., & Prescott, I.(2001). Predicting air-conditioning energy consumption of a group of buildings using different heat rejection methods. Energy and Buildings, 33(2), 151-166.
    23.Yonezawa, K. (2000). Comfort air-conditioning control for building energy-saving. In Industrial Electronics Society, 2000. IECON 2000. 26th Annual Confjerence of the IEEE (Vol. 3, pp. 1737-1742). IEEE.
    24.Yu, F.W. , Chan, K.T. & Rachel K.Y. Sit(2012).Climatic influence on the design and operation of chiller systems serving office buildings in a subtropical climate.Energy and Buildings, 55, 500–507.
    25.Yu, F.W & Chan, K.T.(2009).Environmental performance and economic analysis of all-variable speed chiller systems with load-based speed control. Engineering, 29 , 1721–1729.
    26.Yu, F.W & Chan, K.T.(2008).Optimization of water-cooled chiller system with load-based speed control.Applied Energy, 85 , 931–950.
    27.Yu, F.W & Chan, K.T. (2007).Optimum load sharing strategy for multiple-chiller systems serving air-conditioned buildings.Building and Environment, 42, 1581–1593.
    28.Yu, F.W & Chan, K.T.(2005). Experimental determination of the energy efficiency of an air-cooled chiller under part load conditions.Energy.30, 1747–1758.
    29.Yu, F. W., & Chan, K. T.(2005). Electricity end-use characteristics of air-cooled chillers in hotels in Hong Kong. Building and Environment, 40(1), 143-151.
    30.Ziębik, A., Hoinka, K., & Kolokotroni, M.(2005). System approach to the energy analysis of complex buildings. Energy and buildings, 37(9), 930-938.
    31.王文瑞(2012)。變頻離心式冰水主機之節能驗證。台北市:國立臺北科技大學能源與冷凍空調工程系碩士論文。
    32.江斌誠(2012)。螺旋式冰水主機一次側變流量節能分析。台北市:國立臺北科技大學能源與冷凍空調工程系碩士論文。
    33.吳衍嘉(2005)。大型圖書館建築之空調節能改善分析與全尺度實驗印證。高雄市:國立中山大學機械與機電工程研究所碩士論文。
    34.李奕軒(2009)。冰水主機與冷卻水塔控制策略之耗能分析。台北市:國立台北科技大學能源與冷凍空調工程系碩士論文。
    35.卓紘斌(2001)。空調泵變流量管路設計參數之節能電腦模擬分析。台北市:國立台北科技大學能源與冷凍空調工程系碩士班碩士論文。
    36.林逸偉(2011)。冰水主機系統應用變水量控制策略之節能分析與研究。台中市:國立勤益科技大學冷凍空調系碩士論文。
    37.洪裕昇(2010)。多聯變頻空調系統之性能分析與散熱節能研究。台北市:國立台北科技大學能源與冷凍空調工程系碩士班碩士論文。
    38.張行亮(1994)。空調機週期性運轉策略與節能效益分析。高雄市:國立中山大學機械工程研究所碩士論文。
    39.張志揚(2012)。回饋式類神經網路應用於冷卻水塔節能分析。台中市:國立勤益科技大學冷凍空調系碩士論文。
    40.張議瑋(2005)。電子廠中央空調系統省能設計與全尺度分析印證。高雄市:國立中山大學機械與機電工程研究所碩士論文。
    41.曹仲春(2007)。建築大樓陣列式分離式空調室外機散熱問題分析。台中市:國立勤益科技大學冷凍空調系碩士論文。
    42.陳佳鴻(2010)。空調水側系統節能最佳化控制之動態模擬研究。台北市:國立臺北科技大學能源與冷凍空調工程系碩士論文。
    43.陳孟成(2011)。空調系統季節性負載管理策略節能探討。台中市:國立勤益科技大學冷凍空調與能源系碩士在職專班碩士論文。
    44.陳金雄(2011)。多功能演藝廳空調系統之效能改善案例探討。台中市:國立勤益科技大學冷凍空調與能源系研究所碩士論文。
    45.陳建男(2005)。以空調負載為主高壓用戶之最佳負載控制策略發展與實現。高雄市:國立高雄應用科技大學電能與控制研究所碩士論文。
    46.陳森煌(2001)。以現場實用測量結果作冰水主機部分負載之性能分析。台北市:國立台北科技大學冷凍空調工程碩士在職專班碩士學位論文報告。
    47.陳肇元(2008)。冰水主機性能提升與節能驗證方法之探討。台北市:國立台北科技大學能源與冷凍空調工程系碩士班碩士論文。
    48.陳銘雄(2005)。從熱舒適度探討學校普通教室節能策略。台中市:朝陽科技大學環境工程與管理系碩士論文。
    49.陳緯中(2011)。變頻離心式冰水主機於台灣氣候條件下運轉效益分析。台中市:國立勤益科技大學冷凍空調系碩士論文。
    50.彭開駿(2007)。冷卻水泵變頻之節能研究。台北市:國立臺北科技大學能源與冷凍空調工程系碩士論文。
    51.曾薇甄(2011)。變頻空調機在不同環境下之控制策略。桃園縣:國立中央大學能源工程研究所碩士論文。
    52.黃清福(2010)。使用微霧技術對VRF系統節能效果之分析-以辦公室為例。台北市:國立台北科技大學能源與冷凍空調工程系碩士班碩士論文。
    53.黃慶福(2010)。既有辦公大樓空調系統節能對策研擬及效益分析。台中市:國立勤益科技大學冷凍空調與能源系研究所碩士論文。
    54.楊建裕(2011)。變頻空調機在不同環境下之控制策略。桃園縣:國立中央大學能源工程研究所碩士論文。
    55.廖本文(2011)。超高層大樓空調系統之節能量測與效益分析。台中市:國立勤益科技大學冷凍空調系碩士論文。
    56.趙尉棋(2009)。中央空調變流量冰水系統省能探討。台中市:國立勤益科技大學冷凍空調與能源系研究所碩士論文。
    57.蕭明哲(1990)。空調設備。台北市:全華圖書。
    58.賴靜芬(2009)。以「空間類型」概念評估學校建築能源效率:以台灣科技大學建築系為例。台北市:國立台灣科技大學建築研究所碩士論文。
    59.謝博智(2009)。冰水主機應用不同散熱方法之全年系統性能係數分析-以商業建築為例。台北市:國立台北科技大學能源與冷凍空調工程系碩士論文。
    60.鍾裕和(1999) 。空調系統之冰水主機電腦輔助模擬與實驗分析。台北市:國立臺灣大學機械工程學研究所碩士論文。
    61.蘇倫(2006)。變冷媒量 (VRV) 空調系統於日常節能指標EAC應用之研究。高雄市:國立中山大學機械與機電工程學系碩士論文。
    62.龔錫家(2007)。以電力監控為基礎之最佳化需量管理平台之研究。台北市:國立台灣科技大學電機工程系碩士論文。
    63.經濟部能源局(2006)。政府機關學校耗能指標指導手冊。台北市:經濟部能源局。
    64.陳啟中(2000)。建築設備概論。台北市:詹式書局。
    65.Farrar。網址:http://www.fafarrar.com/
    66.InverterDrive。網址:http://www.inverterdrive.com/
    67.一丞冷凍工業。網址:http://www.icherng.com.tw/
    68.大同3C。網址:http://tcpc.tatung.com/。
    69.大能奈米科技。網址:http://www.inforich.com.tw/
    70.大揚能源科技網。網址:http://www.ta-yang.com.tw/
    71.川圓科技。網址:http://www.aqteq.com/
    72.台灣三洋。網址:http://www.sanyo.com.tw/‎
    73.台灣日立股份有限公司。網址:http://www.taiwan-hitachi.com.tw/
    74.台灣區冷凍空調工程同業公會資訊網。網址:www.hvac-net.org.tw
    75.有益空調工程。網址:http://www.yauyia.com.tw/
    76.宏師企業。網址:http://www.fore-sight.com.tw/
    77.李力技術工程。網址:http://www.hvac-serve.com/
    78.東元電機。網址:http://www.teco.com.tw/
    79.財團法人台灣綠色生產力基金會。網址:http://www.ecct.org.tw/
    80.開利冷氣。網址:http://www.carrier.com.tw/
    81.節能標章全球資訊網。網址:http://www.energylabel.org.tw/intro/introduction/list.asp
    82.經濟部。網址:http://www.moea.gov.tw/
    83.綠色魔法學校。網址:http://www.msgt.org.tw/

    QR CODE