簡易檢索 / 詳目顯示

研究生: Juliananda
Juliananda
論文名稱: 顆粒污泥反硝化硫化物去除
Denitrifying Sulfide Removal with Granule Sludge
指導教授: 李篤中
Duu-Jong Lee
口試委員: Chrish G. Whiteley
Chrish G. Whiteley
Jo-Shu Chang
Jo-Shu Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 60
中文關鍵詞: DSR甲烷硝酸鹽硫化物和HRT
外文關鍵詞: DSR, Methanogenic, Nitrate, Sulfide and HRT
相關次數: 點閱:134下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 同時反硝化去除硫化物(DSR)的過程和硫化物去除連續厭氧顆粒污泥和水力停留時間(HRT)的影響,使用DSR路由過程在厭氧顆粒污泥產甲烷活性批次檢測硫化物和硝酸鹽對這裡考察。最高水平的硫化物400毫克的S / L與500毫克N / L,可以刪除後8小時和21小時後完全消耗硝酸鹽。然而,硝酸鹽除了甲烷文化產生的沼氣生產的滯後時間,增加硝酸鹽濃度的增加。硝酸鹽和硫化物此外,嚴重抑制了甲烷。 12小時的停留時間,有更好的表現相比,水力停留時間為1天硫化物去除。所有的硫化物,在12小時後下降到9.75毫克S / L,並保持穩定的S / L,低於10毫克同時反硝化去除硫化物(DSR)的過程和硫化物去除連續厭氧顆粒污泥和水力停留時間(HRT)的影響,使用DSR路由過程在厭氧顆粒污泥產甲烷活性批次檢測硫化物和硝酸鹽對這裡考察。最高水平的硫化物400毫克的S / L與500毫克N / L,可以刪除後8小時和21小時後完全消耗硝酸鹽。然而,硝酸鹽除了甲烷文化產生的沼氣生產的滯後時間,增加硝酸鹽濃度的增加。硝酸鹽和硫化物此外,嚴重抑制了甲烷。 12小時的停留時間,有更好的表現相比,水力停留時間為1天硫化物去除。所有的硫化物,在12小時後下降到9.75毫克S / L,並保持穩定的S / L,低於10毫克


    Effect of sulfide and nitrate on both Denitrifying Sulfide Removal (DSR) process and methanogenic activity in batch assays using granule sludge and effect of Hydraulic Retention Time (HRT) on sulfide removal in anaerobic DSR process with continuous UASB using granule sludge investigated here. The highest level of sulfide 400 mg S/L with 500 mg N/L can be removed after 8 h and nitrate was completely consumed after 21 h. However, addition of nitrate to methanogenic culture resulting in a lag time of methane production which increased as increasing concentration of nitrate. Both nitrate and sulfide addition seriously inhibits methanogenesis. HRT of 12 hours has better performance compared to HRT of 1 day on sulfide removal. All sulfides was decreased to 9.75 mg S/L after 12 hours and kept stable below 10 mg S/L.

    Abstract…i Abstract in Chineseii Acknowledgements iii Table of Contentiv List of Figures…vi List of Tables vii Chapter 1 Introduction1 1.1Background… 1 1.2Problem Statement 5 1.3Research Objective… 5 Chapter 2 Literature Review…6 2.1 Chemical Compounds 6 2.1.1 Sulfide Compounds 6 2.1.2 Nitrogenous Contaminant 7 2.1.3 Chemical Oxygen Demand7 2.2 Nitrate reduction and methanogenesis Under Sulfide environment8 2.3 Chemolithotrophic denitrification8 2.4 Denitrifying Sulfide Removal9 Chapter 3 Material and Methods15 3.1 Methanogenic culture15 3.2 Batch Assays…5 3.3 Denitrifying sulfide reactor16 3.4 Analytical methods 19 3.4.1 Gas Analysis 19 3.4.2 Liquid Analysis 19 3.4.3 pH 19 3.4.4 Sulfide 20 3.4.5 Nitrate, nitrite and thiosulfate20 Chapter 4 Result and Discussion 21 4.1 Effect Nitrate on Sulfide Removal 21 4.2 Methanogenic Activity27 4.3 Effects of sulfide on nitrate reduction in methanogenic cultures31 4.4 DSR Continuous Test 38 Chapter 5 Conclusions42 5.1 Conclusions…42 5.2 Contributions 42 Reference 43

    Akunna, J.C., Bizeau, C., Moletta, R. 1992. Denitrification in Anaerobic Digesters - Possibilities and Influence of Waste-Water COD/N-NOx Ratio. Environmental Technology, 13, 825-836.
    Akunna, J.C., Bizeau, C., Moletta, R. 1993. Nitrate and nitrite reductions with anaerobic sludge using various carbon-sources - glucose, glycerol, acetic-acid, lactic-acid and methanol. Water Research, 27, 1303-1312.
    American Public Health Association. 2005. Standard methods for the examination of water and wastewater. 21th Edition.Washington, DC: APHAAWWA-WEF.
    American Society of Civil Engineers. 1989. Sulfide in wastewater collection and treatment systems, Manual 69. New York, NY: ASCE.
    Batstone, D. J., Keller, J. 2001. Variation of bulk properties of anaerobic granules with wastewater type. Water Research, 35, 1723–1729.
    Beristain-Cardoso, R., Gomez, J., Mendez-Pampin, R. 2011. Sulfide and ammonium oxidation, acetate mineralization by denitrification in a multipurpose UASB reactor. Bioresource Technology. 102, 2549-2554.
    Brunet, R.C., Garcia-Gil, L. J. 1996. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments. Fems Microbiology Ecology, 21, 131-138.
    Buisman, C. J., Wit B., Lettinga G. 1990. Biotechnological sulphide removal in three polyurethane carrier reactors: stirred reactor, biorotor reactor and upflow reactor. Water Resource, 24, 245-251.
    Cai, J., Zheng, P., Mahmood, Q. 2007. Effect of sulfide to nitrate ratios on the simultaneous anaerobic sulfide and nitrate removal. Bioresource Technology. 99, 5520-5527.
    Campos, J. L., Carvalho, S., Portela, R., Mosquera-Corral, A., Mendez, R. 2008. Kinetics of denitrification using sulphur compounds: Effects of S/N ratio, endogenous and exogenous compounds. Bioresource Technology, 99, 1293-1299.
    Chen, C., Ren, N., Wang, A., Liu, L., Lee D.-J. 2010. Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition. Journal Hazardous Materials, 179, 1147–1151.
    Chen, C., Ren, N., Yu, Z., Lee, D.-J. 2008. Simultaneous biological removal of sulfur, nitrogen and carbon using EGSB reactor. Applied Microbiology Biotechnology, 78, 1057-1063.
    Chen, C., Wang, A. J., Ren, N., Kan, H., Lee, D.-J. 2008. Biological breakdown of denitrifying sulfide removal process in high-rate expanded granular bed reactor. Applied Microbiology Biotechnology, 81, 765-770.
    Chen, C., Wang, A. J., Ren, N., Lee, D.-J., Lai, J.-Y. 2009. High-rate denitrifying sulfide removal process expanded granular bed reactor. Applied Microbiology Biotechnology, 100, 2316-2319.
    Clarens, M., Bernet, N., Delgenes, J.P., Moletta, R. 1998. Effects of nitrogen oxides and denitrification by Pseudomonas stutzeri on acetotrophic methanogenesis by Methanosarcina mazei. Fems Microbiology Ecology, 25, 271-276.
    Delwiche, E., Koshland, D. E.1992. NO news is good news. Science, 258, 1862-1865.
    Fernandez, N., Sierra-Alvarez, R., Field, J. A., Amils, R., Sanz, J. L. 2008. Microbial community dynamics in a chemolithotrophic denitrification reactor inoculated with methanogenic granular sludge. Chemosphere, 70, 462-474.
    Gommers, P. J. F., Kuenen, J. G. 1988. Simultaneous sulphide and acetate oxidation in a denitrifying fluidized bed reactor-I. Start-up and reactor performance. Water Resource, 9, 1075-1083.
    http://www.uasb.org/discover/agsb.htm, accessed on July 1, 2012.
    Kato M., Field, J. A., Versteeg, P., Lettinga, G. 1994. Feasibility of the expanded granular sludge bed (EGSB) reactors for the anaerobic treatment of low strength soluble wastewaters. Biotechnol. Bioengineer, 44, 469-479.
    Kleerebezem, R., Mendez, R. 2002. Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification. Water Science Technology, 45, 349-356.
    Kluber, H.D., Conrad, R. 1998. Inhibitory effects of nitrate, nitrite, NO and N2O on methanogenesis by Methanosarcina barkeri and Methanobacterium bryantii. Fems Microbiology Ecology, 25, 331-339.
    Krishnakumar, B., Manilal, V. B. 1999. Bacterial oxidation of sulphide under denitrifying conditions. Biotechnology Letters, 21, 437-440.
    Krishnakumar, B., Majumdar, S., Manilal, V.B., Haridas, A. 2005. Treatment of sulphide containing wastewater with sulphur recovery in a novel reverse fluidized loop reactor (RFLR). Water Research, 39, 639-647.
    Latif, M. A., Ghufran, R., Zularisam, A. W. & Ahmad, A. 2011. Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters. Water Resource. 45, 4683-4699.
    Lens, P.N.L., Visser, A., Janssen, A. J. H., Pol, L. W. H., Lettinga, G. 1998. Biotechnological treatment of sulfate-rich wastewaters. Critical Reviews Environmental Science and Technology. 28, 41-88.
    Li, W., Zhao, Q.-L., Liu, H. 2009. Sulfide removal by simultaneous autotrophic and heterotrophic desulfurization-denitrification process. Journal Hazardous Materials, 162, 848-853.
    Liamleam, W., Annachhatre, A. P. 2007. Electron donors for biological sulfate reduction. Biotechnology Advances, 25, 452-463.
    Manconi I., Carucci A., Lens P., Rossetti S. (2006) Simultaneous biological of sulphide and nitrate by autotrophic denitrification in an activated sludge system. Water Science Technology, 53, 91–99.
    Michalski, R., Kurzyca, I. 2006. Determination of nitrogen species (nitrate, nitrite and ammonia ions) in environmental samples by ion chromatography. Polish Journal Environmental Studies, 15, 5-18.
    Noyola, A., Mereno, G. 1994. Granulation production from raw waste activated sludge. Water Science Technology, 30, 339–346.
    Padin, J. R. V. 2009. Autotrophic nitrogen removal in granular sequencing batch reactors. Doctoral, Universidad de Santiago de Compostela.
    Park, S., Seon, J., Byun, I., Cho, S., Park, T., Lee, T. 2010. Comparison of nitrogen removal and microbial distribution in wastewater treatment process under different electron donor conditions. Bioresource Technology, 101, 2988-2995.
    Percheron, G., Bernet, N., Moletta, R. 1999. Interaction between methanogenic and nitrate reducing bacteria during the anaerobic digestion of an industrial sulfate rich wastewater. FEMS Microbiology Ecology, 29, 341-350.
    Rouse, J. D., Bishop, C. A., Strugger, J. 1999. Nitrogen pollution: an assessment of its threat to amphibian survival. Environmental Health Perspect, 107, 10.
    Reyes-Avila, J., Razo-Flores, E., Gomez, J. 2004. Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification. Water Research. 38, 3313–3321.
    Schedel, M., Truper, H.G. 1980. Anaerobic oxidation of thiosulfate and elemental sulfur in Thiobacillus Denitrificans. Archives Microbiology, 124, 205-210.
    Schonharting, B., Rehner, R., Metzger, J.W., Krauth, K., Rizzi, M. 1998. Release of nitrous oxide (N2O) from denitrifying activated sludge caused by H2S containing wastewater: Quantification and application of a new mathematical model. Water Science Technology, 38, 237–246.
    Shao, M.-F, Zhang, T., Fang, H. 2010. Sulfur-driven autotrophic denitrification: diversity, biochemistry and engineering applications. Applied Microbiology Biotechnology, 88, 1027-1042.
    Shen, J., He, R., Han, W., Sun, X., Li, J., Wang, L. 2009. Biological denitrification of high-nitrate wastewater in a modified anoxic/oxic-membrane bioreactor (A/O-MBR). Journal Hazardous Materials, 172, 595-600.
    Sorensen, J., Tiedje, J.M., Firestone, R.B., 1980. Inhibition by sulfide of nitric and nitrous-oxide reduction by Denitrifying Pseudomonas Fluorescens. Applied Environmental Microbiology, 39, 105–108.
    Sorensen, J., Rasmussen, L.K., Koike, I. 1987. Micromolar Sulfide Concentrations Alleviate Acetylene Blockage of Nitrous-Oxide Reduction by Denitrifying Pseudomonas-Fluorescens. Canadian Journal Microbiology, 33, 1001-1005.
    Sublette, K.L., Kolhatkar, R., Raterman, K., 1998. Technological aspects of the microbial treatment of sulfide-rich wastewaters: a case study. Biodegrad. 9, 259–271.
    Speece, R. E. 1996. Anaerobic biotechnology for industrial wastewater, Archae Press.
    Tiedje, J.M. 1988. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. John Wiley, Zehnder, A.J.B. (ed), In: Biology of Anaerobic Microorganisms, New York.
    Truper, H.G., Schlegel, H.G. 1964. Sulphur Metabolism in Thiorhodaceae .1. Quantitative Measurements on Growing Cells of Chromatium Okenii. Antonie Van Leeuwenhoek Journal Microbiology Serology, 30, 225.
    Tugtas A. E., Pavlosthatis S. G. 2007a Effect of sulfide on nitrate reduction in mixed methanogenic cultures. Biotechnol Bioengineer, 97,1448-1459.
    Tugtas A. E., Pavlosthatis S. G. 2007b. Electron donor effect on nitrate reduction pathway and kinetics in a mixed methanogenic cultures. Biotechnol Bioengineer, 98, 756-763.
    Tugtas, A. E., Pavlosthatis S. G. 2007c. Inhibitory effects of nitrogen oxides on a mixed methanogenic cultures. Biotechnol Bioengineer, 96, 444-455.
    Tchobanoglous, G., Burton, F. L., Stensel, H. D., Metcalf & Eddy. 2003. Wastewater engineering: treatment and reuse, 4th. ed., Mc Graw-Hill.
    Viviantira E., Wan C., Wong B.-T., Lee D.-J. 2011. Denitrifying sulfide removal with methanogenic culture. Journal Taiwan Institute Chemical Engineers, 43(2012), 374-385.
    Visser, J. M., Robertson, L. A., Van, Verseveld H. W., Kuenen, J. G. 1997. Sulfur Production obligately chemolithoautotrophic Thiobacillus species. Applied Environmental Microbiology, 63, 2300-2305
    Wang, A.J., Du, D.Z., Ren, N.Q., Van, Groenestijn J.W. 2005. An innovative process of simultaneous desulfurization and denitrification by Thiobacillus denitrification. Journal Environmental Science Health, 40, 1939–1949.
    Wang, Q., Feng, C., Zhao, Y., Hao, C., 2009. Denitrification of nitrate contaminated groundwater with a fiber-based biofilm reactor. Bioresource Technology, 100, 2223-2227.
    Wong, B.-T., Lee, D.-J. 2011a. Denitrifying sulfide removal and carbon methanogenesis in a mesophilic, methanogenesis culture. Bioresource Technology, 102, 6673-6679.
    Wong, B.-T., Lee, D.-J. 2011b. Sulfide enhances methanogenesis in nitrate containing methanogenesis cultures. Bioresource Technology, 102, 2427-243.
    Yu Liu, Hai-Lou Xu, Kuan-Yeow Show., Joo-Hwa Tay. 2002. Anaerobic granulation technology for wastewater treatment. World Journal Microbiology Biotechnology, 18, 99-113.
    Zhang, D.-J. 2003. The integration of methanogenesis with denitrification and anaerobic ammonium oxidation in an expanded granular sludge bed reactor. Journal Environmental Science, 15, 423-432.
    Zhang, L., De Schryver, P., De Gusseme, B., Muynck, W., Boon, N., Verstraete, W. 2008. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review, Water Resource, 42, 1-12.
    Zheng, P., Xu, X. Y., Hu, B. L. 2004. New theory and technology for biological nitrogen removal. Science Press, Beijing.
    Zhou, X., Liu, L., Chen, C., Ren, N., Wang, A., Lee, D.-J. 2011. Reduction of produced elementary sulfur in denitrifying sulfide removal process. Applied Microbiology Biotechnology, 90, 1129-1136.

    QR CODE