簡易檢索 / 詳目顯示

研究生: 張文峰
Wen-Fung Chang
論文名稱: 結構鋼索在鹽分氣氛的腐蝕與磨耗行為對強度衰退之影響
The Effect of Corrosion in the Salt Atmosphere and Wear Behavior on the Strength Reduction
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 卓育賢
Yu-Hsien Cho
呂森林
Sen-Lin Lu
蘇裕軒
Yu-Hsuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 129
中文關鍵詞: 鹽霧磨耗強度衰退氯化鈉
外文關鍵詞: Salt spray, Wear, Strength reduction, NaCl
相關次數: 點閱:276下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文主要針對結構鋼索外股鋼線,在近海地區受到不同濃度氯鹽環境腐蝕下,塗覆不同潤滑劑對抗腐蝕強度衰退之研究,另外並探討鋼線通過滑輪時,表面的潤滑劑保護鋼索的磨耗作用與其鋼線強度衰減的問題。
電化學動態極化曲線試驗結果顯示,裸線在3.5%NaCl中比在5%NaCl中會有較高的腐蝕電流(Icorr)與較低的腐蝕電位(Ecorr)。
鹽霧試驗結果顯示3.5%及5%NaCl濃度下,裸線與塗覆85W/140齒輪油鋼線,會隨著腐蝕天數增加使試件表面產生嚴重鏽蝕,塗覆潤滑脂因塗覆不均勻會隨著時間增加產生局部區域鏽蝕,塗覆鋼索油的鋼線則有最優異的保護效果。
拉伸試驗結果顯示,在3.5%與5%NaCl鹽霧條件下,裸線與塗覆85W/140齒輪油的鋼線會有最差的極限強度值,並且在試驗第五天與第九天,破斷面均有發現氯與氧元素的內侵,而伸長率仍會隨著試驗天數增加而減少使延性降低;塗覆潤滑脂者則顯示,因塗覆不均造成強度隨著天數增加而緩慢減少;塗覆鋼索油者則有最優異的強度值。
不同荷重磨耗結果顯示,在2kg荷重條件下,裸線與塗覆85W/140齒輪油的鋼線其極限強度已經產生較嚴重衰減,而鋼線表面塗覆鋼索油與潤滑脂者,其極限強度無明顯衰減;在6kg荷重條件下,除了表面塗覆鋼索油之鋼線外,裸線與塗覆其它油品因為接觸表面無邊界膜存在,而使極限強度大幅度衰減。不同的滑動距離磨耗結果顯示,在4.5km的滑動距離時,裸線與塗覆85W/140齒輪油之鋼線其極限強度已經產生較嚴重衰減,鋼線表面塗覆鋼索油與潤滑脂者,其極限強度無明顯衰減現象;在13.5km滑動距離下,除了表面塗覆鋼索油之鋼線外,裸線與塗覆其它油品因為接觸表面無邊界膜存在,而使極限強度大幅度衰減。


This thesis is focused on the corrosion strength of wire ropes after smearing on different lubricants in different salt concentration atmosphere. Also, effects of protective lubricants on wires passing through pulleys and the strength decay phenomena are discussed.
Electrochemical potentiodynamic polarization curve shows that for non-lubricated wires of 3.5% NaCl, the corrosion current (Icorr) was higher with a lower corrosion potential (Ecorr) than 5% NaCl.
The salt-spraying test results reveal that in 3.5% and 5%NaCl, the surfaces of non-lubricated wires and wires with85W/140 gear oil cause more serious corrosion by increasing test days. Non-uniformity of the smearing lubricants causes strength slower reduction by increasing test days. Moreover, surfaces with wire rope oil have the best protective ability.
The tensile test results show that in 3.5% and 5%NaCl, the strength rapidly decline with increasing test days for non-lubricated wires and wires with 85W/140 gear oil. In addition, the oxygen and chlorine elements are found on the fracture surface on the fifth and the ninth days. However, elongation is decreased for ductility decrease with increasing test days. For lubricated wires without uniform smearing cause the strength decrease with increasing test days. Moreover, wires with wire rope oil have the best strength.
Under different load conditions, the results show that under the load of 2kg, non-lubricated wires and wires with 85W/140 gear oil have more serious decay on ultimate tensile strength (UTS), and it is not happened for wires with wire rope oil and grease. Under the load of 6kg, except wires with wire rope oil, there is no existing boundary layer between contact surfaces, and which causes UTS to decrease. Under different sliding distance conditions, at the sliding distance of 4.5km, non-lubricated wires and wires with 85W/140 gear oil have more serious decay on UTS, and wires with wire rope oil and grease do not have significant decay on UTS. At the sliding distance of 13.5km, except wires with wire rope oil, there is no existing boundary layer between contact surfaces, and which causes UTS to decrease.

摘要 IV ABSTRACT VI 致謝 VIII 表目錄 IV 圖目錄 V 第一章 前言 1 1.1緒論 1 1.2研究動機 4 第二章 文獻回顧 5 2.1 腐蝕及電化學反應 5 2.1.1腐蝕定義 5 2.1.2腐蝕形態 5 2.1.2.1 伽凡尼腐蝕(galvanic corrosion) 6 2.1.2.2 均勻腐蝕(uniform corrosion) 6 2.1.2.3 間隙腐蝕(crevice corrosion) 6 2.1.2.4 孔蝕(pitting corrosion) 7 2.1.2.5 晶界腐蝕(intergranular corrosion) 7 2.1.2.6 沖蝕(erosion corrosion) 7 2.1.2.7選擇性腐蝕(selective leaching) 8 2.1.2.8應力腐蝕(stress erosion) 8 2.1.3電化學反應 8 2.1.4電化學極化現象[11,15] 9 2.1.5 氯化物及氧含量對腐蝕的影響 11 2.2磨耗機制 12 2.2.1黏著磨耗(initial adhesion) 13 2.2.2刮磨磨耗(abrasive wear) 14 2.2.3氧化磨耗 (oxidative Wear) 15 2.2.4剝層磨耗(delamination wear) 18 2.3潤滑劑對磨耗之影響 19 2.3.1半固體潤滑劑(Semi-solid lubricant) 19 2.3.2液體潤滑劑(liquid lubricant) 20 2.4 潤滑模式 21 第三章 實驗方法 23 3.1 實驗流程 23 3.2 磨耗試驗 24 3.2.1實驗設備 24 3.2.2試片前處理 24 3.3大氣腐蝕鹽霧實驗 24 3.3.1實驗設備 24 3.3.2試片前處理 25 3.4拉伸試驗 25 3.5電化學腐蝕試驗 25 3.6實驗分析 25 3.6.1金相組織觀察 25 3.6.2膜厚量測 26 3.6.3掃描式電子顯微鏡與EDS分析儀 26 3.6.4 XRD定性分析 26 第四章 結果與討論 27 4.1金相組織觀察 27 4.2 電化學動態極化曲線量測 27 4.2.1不同濃度對腐蝕速率影響 27 4.3大氣腐蝕模擬試驗 28 4.3.1大氣腐蝕噴霧的試件觀察分析 28 4.3.2腐蝕造成橫截面損失的結果 29 4.3.3拉伸強度分析 30 4.3.3.1塗覆不同油品在3.5%NaCl對強度之影響 30 4.2.3.2塗覆不同油品在5%NaCl水溶液中對強度之影響 35 4.3.3.3不同氯化鈉濃度的鹽霧試驗對腐蝕速率之影響 39 4.2.3.4拉伸試驗破斷顯微觀察 41 4.4 塗覆不同油品的鋼線之磨耗形貌與強度衰減分析 48 4.4.1不同荷重下塗覆不同油品之磨耗表面分析 48 4.4.1.1乾摩擦鋼線之磨耗表面分析 48 4.4.1.2塗覆85W/140齒輪油鋼線之磨耗表面分析 50 4.4.1.3塗覆潤滑脂鋼線之磨耗表面分析 51 4.4.1.4塗覆鋼索油鋼線之磨耗表面分析 52 4.4.2不同滑動距離塗覆不同油品之鋼線磨耗表面分析 53 4.4.2.1乾摩擦鋼線之磨耗表面分析 53 4.4.2.2塗覆85W/140齒輪油鋼線之磨耗表面分析 54 4.4.2.3塗覆潤滑脂鋼線之磨耗表面分析 55 4.4.2.4塗覆鋼索油鋼線之磨耗表面分析 56 4.4.3塗覆不同油品鋼線磨耗後強度衰退分析 57 4.4.3.1 不同荷重對塗覆不同油品鋼線強度衰退的影響 57 4.4.3.2不同滑動距離對塗覆不同油品鋼線強度衰退的影響 60 第五章 結論與建議 63 5.1結論 63 5.2建議 65 參考文獻 66

1.S.R. Ge, R.L. Qu, W.Y. Xie, Reliability techniques for winders in mine, China University of Mining and Technology, 1994.
2.Chaplin CR. Failure mechanisms in wire ropes, Engineering Failure Analysis 02, 1995, 45-57.
3.K. Schrems, D. Maclaren, Failure analysis of a mine hoist rope, Engineering Failure Analysis 04, No.1, 1997, 25-38.
4.I.R. McColl, R.B. Waterhouse, S.J. Harris, M. Tsujikawa, Lubricated fretting wear of a high-strength eutectoid steel rope wire, Wear 185, 1995, 203-212
5.V. Perier, L. Dieng, L. Gaillet, C. Tessier, S. Fouvry, Fretting-fatigue behavior of bridge engineering cables in a solution of sodium chloride, Wear 267, 2009, 308–314.
6.K.K. Schrems, Wear related fatigue in a wire rope failure, Journal of Testing & Evaluation 22, 1994, 490–499.
7.R.B. Waterhouse, Fretting in steel ropes and cable—a review, ASTM Special Technical Publication 1425, 2002, 3–14.
8.F. Deflorian, S. R. Mater, Performance 41, No.12, 2002, 56.
9.F. Deflorian, S. Rossi, B. Tancon and P. L. Bonora, Corrosion behavior of steel ropes for snow and rockfall barriers, Corrsion Engineering Science and Technology 39, 2004, 250-254.
10.劉魁餘,潤滑油脂及其應用,中國石油股份有限公司員工訓練中心教材叢書,1960。
11.柯賢文,腐蝕及其防制,全華科技圖書有限公司,1998。
12.左克東等,腐蝕防制學,百成書店印行,1977。
13.N. G. Fontana and N. D. Greene, “Corrosion Engineering”, McGraw-Hill Company, 1986.
14.Pierre R. Roberge, Ph.D., P.Eng., Corrosion Engineering: Principles and Practice, McGraw-Hill Company, 2008.
15.鮮祺振,金屬腐蝕及其控制,徐氏基金會出版社,1990。
16.N. Perez, Electrochemistry and corrosion science, Kluwer Academic publishers, 2004.
17.曹常成、卓育賢,起重機鋼索常溫腐蝕性能之劣化研究,行政院勞工委員會勞工安全衛生研究所研究報告,2010。
18.K. Holmberg, A. Matthews, Coatings Tribology, Elsevier, Armsterdam, Netherland, 1994.
19.C. Horst, Tribology : a systems approach to the science and technology of friction, lubrication and wear, Amsterdam, Elsevier Scientific Pub. Co., New York, 1978.
20.Failure analysis and prevention, ASM Metal handbook10, 1975, 154-160.
21.V.V. Pokropivny, V.V. Skorokhod, A.V. Pokropivny, Atomistic mechanism of adhesive wear during friction of atomic-sharp tungsten asperity over (114) bcc-iron surface, Materials letters 31, 1997, 49-54.
22.D. Markov, D. Kelly, Mechanisms of adhesion-initiated catastrophic wear: pure sliding, Wear 239, 2000, 189-210.
23.H. Sin, N. Saka, N.P. Suh, Abrasive wear mechanisms and the grit size effect, Wear 55, 1979, 163-190.
24.G. W. Stachowiak, W. B. Andrew, Engineering tribology, Elsevier Butterworth Heinemann, 2005.
25.T.F.J. Quinn, J.L. Sullivan, D.M. Rowson, Origins and development of oxidational wear at low ambient temperatures, Wear 94, 1984,175-191.
26.T.F.J. Quinn, W.O. Winer, An experimental study of the “hot-spots” occurring during the oxidational wear of tool steel on sapphire, Journal of Tribology 109, 1987, 315-320.
27.M. Vardavoulias, The role of hard second phases in the mild oxidational wear mechanism of high-speed steel-based materials, Wear 173, 1994, 105-114.
28.T.F.J. Quinn, Computional methods applied to oxidational wear, Wear 199, 1996, 169-180.
29.T.F.J. Quinn, Oxidational wear modeling part Ⅲ. The effects of speed and elevated temperatures, Wear 216, 1998, 262-275.
30.T.F.J. Quinn, The oxidational wear of low alloy steels, Tribology International 35, 2002, 694-715.
31.J.M. Guilemany, J.M. Miguel, S. Vizcaino, F. Climent, Role of three-body abrasion wear in the sliding wear behaviour of WC-Co coatings obtained by thermal spraying, Surface and Coatings Technology 140, 2001, 141-146.
32.H. So, The mechanism of oxidational wear, Wear 184, 1995, 161-167.
33.N.P. Suh, The delamination theory of wear, Wear 25, 1973, 111-124.
34.J. Beard, Fretting Fatigue, ESIS 18, in: R.B. Waterhouse, T.C. Lindley (Eds), Mechanical Engineering Publications, London, 1997, 419–436.
35.R.T. Schlobohm, NLGL Spokesmen 46, 1982, 334–338.
36.Z.R. Zhou, S. Goudeau, M. Fiset, A. Cardou, Wear 181–183, 1995, 537–543.
37.Z.R. Zhou, P. Kapsa, L. Vincent, ASME 120, 1998, 737–743.
38.D. Dowson, G, R. Higginson, Elastohydrodynamic in lubrication, Pergamon Press, 1977.
39.李克讓,磨潤工程-磨潤概論, 三民書局,1986。
40.L. Caceres , T. Vargas , L. Herrera, Influence of pitting and iron oxide formation during corrosion of carbon steel in unbuffered NaCl solutions, Corrosion Science 51, 2009, 71–97.
41.C.J. Wang, Y.C. Chang, TEM Study of the Internal Oxidation of an Fe–Mn–Al–C Alloy after Hot Corrosion, Oxidation of Metals 57, 2002, 363-378.

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE