簡易檢索 / 詳目顯示

研究生: 郭珊妤
Shan-Yu Kuo
論文名稱: 主動式立體相機定位系統開發
Development of an Active Binocular Stereo Vision System
指導教授: 蘇順豐
Shun-Feng Su
郭重顯
Chung-Hsien Kuo
口試委員: 黃漢邦
Han-Pang Huang
顏炳郎
Ping-Lang Yen
劉益宏
Yi-Hung Liu
郭重顯
Chung-Hsien Kuo
蘇順豐
Shun-Feng Su
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 94
中文關鍵詞: 雙目視覺系統應用光學絕對編碼器系統結構參數相機標定參數定位精度
外文關鍵詞: Binocular vision system, applied optics, absolute encoder, system structure parameter, camera calibration parameter, location accuracy
相關次數: 點閱:156下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著計算機視覺的發展,雙目立體視覺(BSV)系統已廣泛應用於機器人或自動駕駛的各個領域。然而,現有的 BSV 系統缺乏參數優化和 ROI 固定的問題,導致定位精度在某些應用中仍不能完全滿足。而本文提出了一種可改變雙目相機的姿態,讓 BSV 系統能在最佳的條件下進行定位並提高定位精度,此系統稱為My Eyes System (MyE)。這是通過改良一般的 BSV 系統和分析系統的參數、定位公式和誤差來實現的。這些參數和公式可以分為機構誤差參數和系統結構參數(SSP)的補償公式。對於機構誤差,定義了一組誤差參數和因組裝誤差導致的偏移參數。另外提出了一種誤差分析模型來解釋由誤差參數引起的定位誤差。另一方面,對於 SSP,透過補償參數和分析定位公式,讓此系統在任一角度都可以達到精確的定位。最後,在驗證方面,為了比較相機參數和定位精度,進行了大量的實驗,證明了本研究提出的方法的有效性。將 Matlab 校正後的參數數據與本研究平台進行相機參數對比。此外,使用市售的雙目相機進行精度比較,用於定位精度的比較。為 BSV 系統在應用光學研究和應用領域的應用提供了有價值的參考。


    With the development of computer vision, binocular stereo vision (BSV) systems
    have been widely used in various fields of robotics and autonomous driving. However,
    the existing BSV systems have the problems of parameter optimization and ROI
    fixation, resulting in an unsatisfactory localization accuracy in some applications. In
    this paper, a method that can change the attitude of the binocular camera is proposed so that the BSV system can be positioned under the best conditions and improve
    positioning accuracy. This system is called the My Eyes System (MyE). This
    improvement is achieved by modifying the parameters, positioning formulas, and errors
    of the general BSV system and analysis system. These parameters and formulas can be
    divided into mechanism error parameters and compensation formulas for system
    structural parameters (SSPs). A set of error parameters and offset parameters due to
    assembly errors are defined for mechanism errors. In addition, an error analysis model
    is proposed to explain the positioning errors caused by the error parameters.
    On the other hand, for SSP, by compensating parameters and analyzing the
    positioning formula, the system can achieve precise positioning at any angle. Finally,
    in terms of verification, extensive experiments are conducted to compare the camera
    parameters and localization accuracy to demonstrate the effectiveness of the method
    proposed in this study. The parameter data corrected by MATLAB were compared with
    the camera parameters of this research platform. In addition, an accuracy comparison
    was performed using a commercially available binocular camera for the comparison of
    positioning accuracy. It provides a valuable reference for applying the BSV system in
    applied optics research and application fields.

    指導教授推薦書 ii 口試委員會審定書 iii 誌謝 iv 摘要 v Abstract vi List of Contents vii List of Tables ix List of Figures xi Nomenclature xiv Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Review 4 1.2.1 Analysis of BSV Positioning 4 1.2.2 Optimization of parameters in BSV positioning 5 1.3 Organization of the Thesis 7 Chapter2 System Architecture and Research Methods 8 2.1 System Architecture 8 2.2 Hardware Architecture 9 2.3 The MyE System Specifications 11 Chapter3 Variable camera extrinsic BSV System 13 3.1 Mechanism and camera deviation 14 3.2 Positioning Formula Model 23 3.3 Verification - 39 - 3.4 MyE System Specifications & Comparisons - 43 - Chapter4 Experimental result and discussion - 45 - 4.1 Experient 1 for relative coordinates - 45 - 4.1.1 MyE System result - 46 - 4.1.2 Matlab result - 52 - 4.1.3 ZED result - 58 - 4.1.4 RealSense result - 62 - 4.1.5 NDI result - 65 - 4.1.6 Error Result Analysis - 67 - 4.2 Experient 2 for absolute coordinates - 68 - 4.2.1 MyE System result - 70 - 4.2.2 ZED System result - 73 - 4.2.3 Error Result Analysis - 76 - Chapter5 Conclusion and Future work - 77 - Reference - 78 -

    [1] L. Chong, “Binocular stereo vision assisted industrial robot online motion compensation analysis and trajectory fitting,” 2020 International Conference on Advance in Ambient Computing and Intelligence (ICAACI), 2020, pp. 31-35.
    [2] C. Lv, X. Wang and Q. Zhang, “The head detection method based on binocular stereo vision,” 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2016, pp. 477-483.
    [3] G. Shuai, M. Wenlun, F. Jingjing and L. Zhipeng, “Target Recognition and Range-measuring Method based on Binocular Stereo Vision,” 2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI), 2020, pp. 623-626.
    [4] M. Jiang, “Binocular Stereo Vision Intelligent Control Framework for the Landing Position of Quadrotor UAV Based on Fuzzy Control,” 2021 6th International Conference on Communication and Electronics Systems (ICCES), 2021, pp. 1348-1352.
    [5] R. Szabó and A. Gontean, “Controlling a robotic arm in the 3D space with stereo vision,” 2013 21st Telecommunications Forum Telfor (TELFOR), 2013, pp. 916-919.
    [6] R. Szabó and A. Gontean, “Robotic arm control in 3D space using stereo distance calculation,” 2014 International Conference on Development and Application Systems (DAS), 2014, pp. 50-56.
    [7] Y. -Z. Hsieh and S. -S. Lin, “Robotic Arm Assistance System Based on Simple Stereo Matching and Q-Learning Optimization,” in IEEE Sensors Journal, vol. 20, no. 18, pp. 10945-10954, 15 Sept.15, 2020.
    [8] F. Fooladgar, S. Samavi, S. M. R. Soroushmehr and S. Shirani, “Geometrical Analysis of Localization Error in Stereo Vision Systems,” in IEEE Sensors Journal, vol. 13, no. 11, pp. 4236-4246, Nov. 2013.
    [9] W. Sankowski, M. Włodarczyk, D. Kacperski, and K. Grabowski, “Estimation of measurement uncertainty in stereo vision system,” Image Vis. Comput., vol. 61, pp. 70–81, 2017.
    [10] K. Schreve, “How accurate can a stereovision measurement be?,” 15th International Workshop on Research and Education in Mechatronics (REM), 2014, pp. 1-7.
    [11] G. Di Leo and A. Paolillo, “Uncertainty evaluation of camera model parameters,” 2011 IEEE International Instrumentation and Measurement Technology Conference, 2011, pp. 1-6.
    [12] Retrieved from https://www.stereolabs.com/zed-2/
    [13] L. Yang, B. Wang, R. Zhang, H. Zhou, and R. Wang, “Analysis on Location Accuracy for the Binocular Stereo Vision System,” IEEE Photonics Journal, vol. 10, Iss. 1, June 2018.
    [14] Qiong Liu, Xiansheng Qin, Shenshun Yin and Feng He, “Structural Parameters Optimal Design and Accuracy Analysis for Binocular Vision Measure System,” 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2008, pp. 156-161.
    [15] B. Lu, Y. Liu, and L. Su, “Error analysis of binocular stereo vision system applied in small scale measurement,” Acta Photon. Sin., vol. 44, no. 10, pp. 1–6, 2015.
    [16] S. Shih and W. Tsai, “Optimal Design and Placement of Omni-Cameras in Binocular Vision Systems for Accurate 3-D Data Measurement,” in IEEE Transactions on Circuits and Systems for Video Technology, vol. 23, no. 11, pp. 1911-1926, Nov. 2013.

    無法下載圖示 全文公開日期 2027/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE