簡易檢索 / 詳目顯示

研究生: 施正元
Jeng-Ywan Shih
論文名稱: 奈米矽質摻料對水泥基複合材料性質之影響
Effects of Nano Siliceous Admixtures on Properties of Cement-Based Composites
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 陳振川
Jenn-Chuan Chern
黃然
Ran Huang
楊仲家
Chung-Chia Yang
林宜清
Yi-Ching Lin
黃忠信
Jong-Shin Huang
沈得縣
Der-Hsien Shen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 181
中文關鍵詞: 奈米矽質摻料奈米蒙脫土奈米二氧化矽工程性質微觀結構
外文關鍵詞: nano siliceous admixture, nano-montmorillonite, nano-silica, engineering property, microstructure
相關次數: 點閱:271下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摻料於高性能水泥基複合材料的研究發展過程中,扮演著極為重要的角色,尤其是卜作嵐材料,在考量經濟與環保並顧及安全因素下,儼然成為不可或缺之組成要項。隨著奈米時代的降臨,此一劇烈風潮對於營建科技帶來嶄新的衝擊,遂有奈米矽質摻料應運而生。
    本研究選定奈米蒙脫土與奈米二氧化矽兩種熟識的奈米矽質摻料,根據以往研究成果獲知此等摻料應用於高分子複合材料具有卓越之效能,基於物理緻密與化學鍵結雙重優點,本研究試圖將其拓展至水泥基材上,經由0、0.002、0.004、0.006及0.008一系列水泥重之添加比例,測試工程性質與分析微觀結構。實驗結果顯示於56天齡期時,奈米蒙脫土最佳添加比例為0.004,其抗滲透行為改善為奈米二氧化矽之1.65倍;奈米二氧化矽最佳添加比例為0.006,其抗壓強度提昇為奈米蒙脫土之3.31倍。在水溶液狀態下界達電位的絕對值,奈米二氧化矽超過35mV,奈米蒙脫土則不及20mV,得知奈米二氧化矽較奈米蒙脫土易於分散。XRD、DSC、XPS等測試結果顯示,水泥基材添加奈米蒙脫土或奈米二氧化矽後,形成更加緻密且穩固之組織。同時由NMR、BET、MIP等分析資料所得之 、 、D、D*等指標,可作為評估添加奈米摻料效益之良窳,其值愈高,成效愈好,水泥基複合材料之指標值由高而低之順序依次為奈米二氧化矽水泥漿體、奈米蒙脫土水泥漿體及純水泥漿體。
    水泥基材添加奈米矽質摻料後,對工作性均造成不良影響,在抗壓強度最佳添加比例0.006之條件下,水泥基複合材料添加奈米蒙脫土之黏度值及流度值分別為添加奈米二氧化矽者之1.24倍及0.63倍。此外,實驗結果顯示水泥砂漿添加奈米二氧化矽之比例為0.006時,具有最佳之抗滲透行為及抗壓強度,在此最佳比例條件下,在56天齡期時,滲透係數降低18.84 %及抗壓強度增加20.94 %。
    最後本研究利用氫氧化鈣之變化推估奈米矽質水泥基複合材料之水化模式,模式中將水化過程區分為成核生長、交互作用及擴散等三階段,再反應曲線於各階段間之變化率一致之必要條件下,可明確地獲知各階段間之轉換界面,與傳統之溫度或水化熱反應曲線相比,本研究所提出之分析技術,有助於釐清水泥基材在添加不同奈米摻料時對三階段作用時間消長之影響,測試結果顯示,成核生長至交互作用階段之時間與交互作用至擴散階段之時間,在添加奈米蒙脫土後,分別增加7分22秒與12分36秒,在添加奈米二氧化矽後,則分別增加3分32秒與7分21秒。


    During R&D process of high performance cement-based composites, the admixture play an important role, especially pozzolanic material, under economic, enviromental protection, and safty consideration, it become a nonevitable ingredient. Due to the coming of nano-era, construction technology was impacted by such tremendous agitation, so yielding nano siliceous admixtures.
    This study selects two kinds of well-known nano siliceous admixtures, i.e. nano-montmorillonite (NM) and nano-silica (NS). According to literature review, such admixtures applied in polymer composites manifest excellently. Based on both physic consolidation and chemical bondage, this study tries to expand to cement-based material. Through a series of 0, 0.002, 0.004, 0.006, 0.008 additions by weight of cement, testing engineering properties as well as analyzing microstructures. Experimental results illustrate that after 56-day curing the optimal addition of NM is 0.004 which the improvement of permeability resistance is superior to NS by 1.65 times and the optimal addition of NS is 0.006 which the enhancement of compression is greater than NM by 3.31 times. From absolute values of zeta potential, NS is over 35 mV, whereas NM is under 20 mV, therefore, NS is more dispersive than NM in aqueous solution. Test results of XRD, DSC, XPS reveal that cement-based materials become denser and stabler as incorporating NM or NS. Meanwhile, , , D, D* indices related NMR, BET, MIP are suitable for evaluating additional effects, the higher values are these indices, the better profits they perform. About indices values of cement-based composites from large to small are as follows: cement pastes with NS, cement pastes with NM, pure cement pastes.
    After adding nano siliceous admixtures, cement-based materials become sticky on workability. Under the condition of the optimal compressive strength, i.e. the 0.006 addition, viscosity and flow values of cement-based composites with NM is higher than with NS by 1.24 times and 0.63 times. Moreover, experimental results show that mortars with 0.006 addition of NS obtains the optimal permeability resistance and compressive strength for 56-day curing. Under such optimal situation, the permeability coefficient decreases 18.84% as well as the compressive strength increases 20.94%.
    Finally, the change of calcium hydroxide is used in this study to predict hydration models, by such models the hydration procedure is divided into nucleation/growth, interaction, and diffusion stages. Under the assumption of the reactive curve differential values between adjacent stages being equal, the transit interface can be obviously acquired. Compared to traditional reactive curves of temperature or of hydration heat, such analytical technique is convenient to verify the effect of various nano admixtures on reactive time of cement-based materials. Test results present that the transit time from nucleation/growth to interaction and the transit time from interaction to diffusion respectively increase 7 min 22 sec and 12 min 36 sec after adding NM, while 3 min 32 and 7 min 21 sec as incorporating NS.

    中文摘要----------------------------------------------------------------- i 英文摘要----------------------------------------------------------------- iii 誌謝--------------------------------------------------------------------- v 目錄--------------------------------------------------------------------- vi 表目錄------------------------------------------------------------------- xii 圖目錄------------------------------------------------------------------- xv 符號說明----------------------------------------------------------------- xxii 第一章 緒論------------------------------------------------------------- 1 1-1 奈米科技之發展-------------------------------------------------- 2 1-2 營建工程與奈米科技---------------------------------------------- 6 1-3 研究動機與目的-------------------------------------------------- 8 1-4 研究方法與流程-------------------------------------------------- 9 第二章 文獻回顧--------------------------------------------------------- 12 2-1 掺料與卜作嵐材料------------------------------------------------ 12 2-2 奈米掺料與奈米矽質摻料------------------------------------------ 15 2-3 水泥水化物------------------------------------------------------ 17 第三章 實驗原理與設備--------------------------------------------------- 31 3-1 測試原理-------------------------------------------------------- 31 3-1-1 抗壓試驗-------------------------------------------------------- 31 3-1-2 滲透試驗-------------------------------------------------------- 31 3-1-3 界達電位檢測---------------------------------------------------- 38 3-1-4 超音波檢測------------------------------------------------------ 39 3-1-5 電阻檢測-------------------------------------------------------- 39 3-1-6 黏度試驗-------------------------------------------------------- 40 3-1-7 流度試驗-------------------------------------------------------- 43 3-1-8 共振頻率檢測---------------------------------------------------- 44 3-1-9 X射線繞射試驗--------------------------------------------------- 45 3-1-10 穿透式電子顯微鏡檢測-------------------------------------------- 45 3-1-11 場射掃描式電子顯微鏡檢測---------------------------------------- 46 3-1-12 示差掃描熱量試驗------------------------------------------------ 46 3-1-13 X射線光電子能譜試驗--------------------------------------------- 47 3-1-14 核磁共振光譜試驗------------------------------------------------ 48 3-1-15 氣體吸附試驗---------------------------------------------------- 49 3-1-16 壓汞孔隙試驗---------------------------------------------------- 50 3-2 儀器設備-------------------------------------------------------- 51 3-2-1 抗壓試驗設備---------------------------------------------------- 51 3-2-2 滲透試驗設備---------------------------------------------------- 51 3-2-3 界達電位測定儀-------------------------------------------------- 52 3-2-4 超音波測定儀---------------------------------------------------- 52 3-2-5 電阻測定儀------------------------------------------------------ 52 3-2-6 黏度儀---------------------------------------------------------- 52 3-2-7 流度儀---------------------------------------------------------- 52 3-2-8 共振頻率測定儀-------------------------------------------------- 52 3-2-9 X射線繞射儀----------------------------------------------------- 52 3-2-10 穿透式電子顯微鏡------------------------------------------------ 53 3-2-11 場射掃描式電子顯微鏡-------------------------------------------- 53 3-2-12 示差掃描熱量計-------------------------------------------------- 53 3-2-13 X射線光電子能譜儀----------------------------------------------- 53 3-2-14 核磁共振光譜儀-------------------------------------------------- 53 3-2-15 氣體吸附測定儀-------------------------------------------------- 53 3-2-16 壓汞孔隙測定儀-------------------------------------------------- 54 第四章 奈米蒙脫土水泥漿體複合材料性質----------------------------------- 63 4-1 前言------------------------------------------------------------ 63 4-2 實驗計畫-------------------------------------------------------- 64 4-2-1材料與變數---------------------------------------------------------- 64 4-2-2方法與儀器---------------------------------------------------------- 65 4-3 結果與討論------------------------------------------------------ 66 4-3-1 抗壓試驗-------------------------------------------------------- 66 4-3-2 滲透試驗-------------------------------------------------------- 67 4-3-3 界達電位檢測---------------------------------------------------- 67 4-3-4 電阻檢測-------------------------------------------------------- 68 4-3-5 黏度試驗-------------------------------------------------------- 69 4-3-6 X射線繞射試驗--------------------------------------------------- 69 4-3-7 場射掃描式電子顯微鏡檢測---------------------------------------- 70 4-3-8 示差掃描熱量試驗------------------------------------------------ 70 4-3-9 X射線光電子能譜試驗--------------------------------------------- 71 4-3-10 核磁共振光譜試驗------------------------------------------------ 72 4-3-11 氣體吸附試驗---------------------------------------------------- 73 4-3-12 壓汞孔隙試驗---------------------------------------------------- 75 4-4 本章小結-------------------------------------------------------- 77 第五章 奈米二氧化矽水泥漿體複合材料性質--------------------------------- 98 5-1 前言---------------------------------------------------------------- 98 5-2 實驗計畫------------------------------------------------------------ 99 5-2-1 材料與變數--------------------------------------------------------- 99 5-2-1 方法與儀器--------------------------------------------------------- 100 5-3 結果與討論---------------------------------------------------------- 101 5-3-1 抗壓試驗-------------------------------------------------------- 101 5-3-2 滲透試驗-------------------------------------------------------- 102 5-3-3 界達電位檢測---------------------------------------------------- 102 5-3-4 電阻檢測-------------------------------------------------------- 103 5-3-5 黏度試驗-------------------------------------------------------- 103 5-3-6 X射線繞射試驗---------------------------------------------------- 103 5-3-7 場射掃描式電子顯微鏡檢測----------------------------------------- 104 5-3-8 示差掃描熱量試驗------------------------------------------------- 105 5-3-9 X射線光電子能譜試驗---------------------------------------------- 105 5-3-10 核磁共振光譜試驗------------------------------------------------- 106 5-3-11 氣體吸附試驗----------------------------------------------------- 107 5-3-12 壓汞孔隙試驗----------------------------------------------------- 108 5-4 本章小結------------------------------------------------------------- 109 第六章 奈米二氧化矽水泥砂漿複合材料性質---------------------------------- 128 6-1 前言----------------------------------------------------------------- 128 6-2 實驗計畫------------------------------------------------------------- 128 6-2-1 材料與變數---------------------------------------------------------- 128 6-2-2方法與儀器----------------------------------------------------------- 129 6-3 結果與討論----------------------------------------------------------- 130 6-3-1 抗壓試驗--------------------------------------------------------- 130 6-3-2 滲透試驗--------------------------------------------------------- 130 6-3-3 超音波檢測------------------------------------------------------- 130 6-3-4 共振頻率檢測----------------------------------------------------- 131 6-3-5 流度試驗--------------------------------------------------------- 132 6-3-6 場射掃描式電子顯微鏡檢測----------------------------------------- 132 6-3-7 壓汞孔隙試驗----------------------------------------------------- 133 6-4 本章小結------------------------------------------------------------- 134 第七章 比較分析---------------------------------------------------------- 145 7-1 奈米矽質摻料----------------------------------------------------- 145 7-1-1 抗壓試驗--------------------------------------------------------- 145 7-1-2 滲透試驗--------------------------------------------------------- 145 7-1-3 界達電位檢測----------------------------------------------------- 145 7-1-4 電阻檢測--------------------------------------------------------- 146 7-1-5 工作度檢測------------------------------------------------------- 146 7-1-6 X射線繞射試驗---------------------------------------------------- 147 7-1-7 場射掃描式電子顯微鏡檢測----------------------------------------- 147 7-1-8 示差掃描熱量試驗------------------------------------------------- 147 7-1-9 X射線光電子能譜試驗---------------------------------------------- 147 7-1-10 核磁共振光譜試驗------------------------------------------------- 148 7-1-11 氣體吸附試驗----------------------------------------------------- 148 7-1-12 壓汞孔隙試驗----------------------------------------------------- 148 7-2 水泥基複合材料--------------------------------------------------- 149 7-2-1 抗壓試驗--------------------------------------------------------- 149 7-2-2 滲透試驗--------------------------------------------------------- 149 7-2-3 電阻檢測--------------------------------------------------------- 149 7-2-4 超音波檢測------------------------------------------------------- 150 7-2-5 場射掃描式電子顯微鏡檢測----------------------------------------- 150 7-2-6 壓汞孔隙試驗----------------------------------------------------- 150 7-3 水化反應模式----------------------------------------------------- 151 7-3-1 原理---------------------------------------------------------------- 151 7-3-2 模式---------------------------------------------------------------- 153 第八章 結論與建議-------------------------------------------------------- 164 8-1 結論----------------------------------------------------------------- 164 8-2 建議----------------------------------------------------------------- 166 參考文獻------------------------------------------------------------------ 167 作者簡介------------------------------------------------------------------ 179

    第一章
    1.1 R. P. Feynman, “Miniaturizatiion,” Reinhold, New York, (1961).
    1.2 J. M. Lehn, “Superamolecular chemistry,” VCH, Weinheim, (1995).
    1.3 J. Jortner, and C. N. R. Rao, “Nanostructured advanced materials-Perspectives and directions,” Pure Appl. Chem. 74 (2002) 1491-1506.
    1.4 白春禮,「納米科技現在與未來」,凡異,(2002)。
    1.5 張立德、牟季美,「奈米材料和奈米結構」,滄海,(2002)。
    1.6 馬遠榮,「奈米科技」,商周,(2002)。
    1.7 劉吉平、郝向陽,「奈米科學與技術」,世茂,(2003)。
    1.8 http://www.zyvex.com/nanotech/feynman.html.

    1.9 牟中原、陳家俊,「奈米材料研究發展」,科學發展月刊,28,國科會,(2002),281-289。
    1.10 http://www.cordis.lu/fp7/themes.htm.

    1.11 http://www.mmsconferencing.com/nanoc/

    1.12 L. H. V. Vlack, “Materials for engineering,” Addison-Wesley, New York (1982).
    1.13 J. J. Beaudoin, “Why engineers need materials science,” Concr. Inter. 21 (1999).
    1.14 H. F. W. Taylor, “Nanostructure of C-S-H: Current status,” Adv. Cem. Bas. Mater. 1 (1993) 38-46.
    1.15 D. P. Bentz, J. T. G. Hwang, C. Hagwood, E. J. Garboczi, K. A. Snyder, N. Buenfeld, and K. L. Scrivener, “Interfacial zone percolation in concrete: Effects of interfacial thickness and aggregate shape, in Microstructure of cement-based systems/bonding and interfaces in cementitious materials,” edited by S. Diamond et al. Materials Research Society 370 Pittsburgh, (1995) 437-442.

    第二章
    2.1 ACI Committee 212, “Admixture for concrete,” ACI J. Proc. 60 (1963) 1481-1524.
    2.2 S. Popovics, “Concrete-making materials,” Hemisphere, Washington, (1979).
    2.3 S. Mindess, J. F. Young, and D. Darwin, “Concrete,” Pearson Education, New Jersey, (2002).
    2.4 P. C. Aitcin, “High-performance concrete,” E & FN SPON, New York, (1998).
    2.5 P. K. Mehta, “Influence of fly ash characteristics on the strength of Portland-fly ash cement,” Cem. Concr. Res. 15 (1985) 669-674.
    2.6 P. J. Tikalsky, “Strength and durability consideration affect in mix
    proportioning of concrete containing fly ash,” ACI Mater. J. 8 (1985) 505-511.
    2.7 N. Maslehuddin, “Effect of sand replacement on the early age strength gain and long-term corrosion resisting characteristics of fly ash concrete,” ACI Mater. J. 12 (1989) 58-62.
    2.8 S. Grzeszczyk, and G. Lipowski, “Effect of content and particle size distribution of high-calcium fly ash on the rheological properties of cement pastes,” Cem. Concr. Res. 27 (1997) 907-916.
    2.9 A. Goldman, and A. Bentur, “Bond effects in high-strength silica fume concrete,” ACI Material J. 86 (1989) 440-447.
    2.10 A. Durekovic, “Cement pastes of low water to solid ratio: an investigation of the porosity characteristics under the influence of superplasticizer and silica fume,” Cem. Concr. Res. 25 (1995) 365-375.
    2.11 S. Caliskan, “Aggregate/mortar interface: influence of silica fume at the micro- and macro- level,” Cem. Concr. Comp. 25 (2003) 557-564.
    2.12 A. M. Alshamsi, K. I. Alhosani, and K. M. Yousri, “Hydrophobic materials, superplasticizer and microsilica effects on setting of cement pastes at various temperatures,” Magaz. Concr. Res. 49 (1997) 111-115.
    2.13 M. J. Pitkethly, “Nanomaterials-The driving force,” Mater. Today 7 (2004) 20-29.
    2.14 劉仲明、郭東瀛,「奈米材料」,經濟部工業局,(2002)。
    2.15 劉吉平、郝向陽,「奈米科學與技術」,世茂,(2003)。
    2.16 C. J. Brinker, “Sol-gel science,” Academic Press, (1990).
    2.17 A. C. Pierre, “Introduction to sol-gel processing,” Kluwer Academic Publishers, (1998).
    2.18 A. M. Neville, “Properties of concrete,” 4th edition, Longman Group, Harlow, (1995).
    2.19 F. M. Lea, “The chemistry of cement and concrete,” 3rd ed., Edward Arnold, London, (1970).
    2.20 “Handbook of chemistry and physics,” edited by D. R. Lide, 86th edition, CRC Press, FL, (2005).
    2.21 P. K. Metha, and P. J. M. Monteiro, “Concrete: Structure, properties, and materials,” 2nd edition, Prentice Hall, New York, (1993).
    2.22 V. S. Ramachadran, R. F. Feldman, and J. J. Beaudoin, “Concrete science,” Heyden & Sons, New York, (1981).
    2.23 S. Popovics, “Strength and related properties of concrete: A quantitative approach,” John Wiley & Sons, New York, (1998).
    2.24 T. C. Powers, “The physical structure and engineering properties of concrete,” Bulletin 90, Research and Development Laboratories, Portland Cement Association, Skokie, IL, July, (1958) p24.
    2.25 T. C. Powers, and T. L. Brownyard, “Studies of the physical properties of hardened Portland cement paste-Part 6,” ACI J., 43 (1947) 845-864.
    2.26 R. F. Feldem, and P. J. Sereda, “A model for hydrated Portland cement paste as deduced for sorption-length change and mechanical properties,” Materials and Structures-Research and Testing, RILEM 1 (1968) 509-529.
    2.27 F. D. Tamas, and M. Fabry, “The change in reactivity of silicate anions during the hydration of calcium silicates and cement,” Cem. Concr. Res. 3 (1973) 767-776.
    2.28 F. D. Tamas, and T. Varady, “Role of poly-reactions in the Hydration of cement,” Hungarian J. Industrial Chemistry 3 (1975) 347-354.
    2.29 H. F. W. Taylor, “Nanostructure of C-S-H: Current status,” Adv. Cem. Bas. Mater. 1 (1993) 38-46.
    2.30 H. M. Jennings, “A model for the microstructure of calcium silicate hydrate in cement paste,” Cem. Concr. Res. 30 (2000) 101-116.
    2.31 E. J. Garboczi, and D. P. Bentz, “Digital simulation of the aggregate-cement paste interfacial zone in concrete,” J Mater. Res. 6 (1991) 196-201.
    2.32 D. P. Bentz, “Modelling cement microstructure: Pixels, particles, and property prediction,” Mater. Struc. 32 (1999) 187-195.

    第三章
    3.1 A. M. Alshamsi, and H. D. A. Imran, “Development of a permeability apparatus for concrete and mortar,” Cem. Concr. Res. 32 (2002) 923-929.
    3.2 B. E. Poling, J. M. Prausnitz, and J. P. Oconnell, “The properties of gases and liquids,” 5th edition, McGraw-Hill, New York, (2000).
    3.3 R. M. Felder, and R. W. Rousseau, “Elementary principles of chemical processed,” John Wiely & Sons, New York, (2000).
    3.4 呂維明、戴怡德主編,「粉粒體粒徑量測技術」,高立,台北,(1998)。
    3.5 http://www.colloidal-dynamics.com
    3.6 J. Krautkramer, and H. Krautkramer, “Ultrasonic testing of materials,” 3rd Edition, Springer-Verlag, New York, (1983).
    3.7 W. Morris, E. I. Moreno, and A. A. Sagues, “Practical evaluation of resistivity of concrete in test cylinders using a Wenner array probe,” Cem. Concr. Res. 26 (1996) 1779-1787.
    3.8 http://www.rheologyschool.com
    3.9 S. Popovics, “Fundamentals of Portland cement concrete: A quantitative approach vol 1: Fresh concrete,” John Wiley & Sons, New York, (1982).
    3.10 P. F. G. Banfill, “The rheology of cement paste: Progress since 1973,” proceedings of the RILEM colloquium, Proceeding 10, Properties of Fresh Concrete, edided by H. J. Wierig, Chapman and Hall, New York, (1990) 3-9.
    3.11 V. M. Malhotra, “Testing hardened concrete: Nondestructive methods,” ACI Monograph 8 ACI Detroit, Michigan, (1976).
    3.12 許樹恩、吳泰伯,「X光繞射原理與材料結構分析」,中國材料科學學會,台北,(1996)。
    3.13 陳力俊,「材料電子顯微鏡學」,國科會精密儀器發展中心,新竹,(1994)。
    3.14 http://pilot.mse.nthu.edu.tw/micro/chap10/
    3.15 孫逸民、陳玉舜、趙敏勳、謝明學、劉興鑑主編,「儀器分析」,全威,台北,(1997)。
    3.16 汪建民主編,「材料分析」,中國材料科學學會,台北, (2001)。
    3.17 W. W. Weylandt, “Thermal analysis,” 3rd ed., John Wiley & Sons, New York, (1986).
    3.18 S. Brunauer, P. H. Emmet, and E. Teller, “Adsorption of gases in multimolecular layers,” J. Am. Chem. Soc. 60 (1938) 309-319.
    3.19 R. G. Jenkins, and M. B. Rao, “Effect of elliptical pores on mercury porosimetry results,” Powder Tech. 38 (1984) 177-180.

    第四章
    4.1 F. Dellisanti, and G. Valdre, “Study of structural properties of ion treated and mechanically deformed commercial bentonite,” Appl. Clay Sci. 28 (2005) 233-244.
    4.2 S. B. Hendricks, “Lattice structure of clay minerals,” J. Geol. 50 (1942) 276-290.
    4.3 S. J. Ahmadi, Y. D. Huang, and W. Li, “Synthetic routes, properties and future applications of polymer-layered silicate nanocomposites,” J. Mater. Sci. 39 (2004) 1919-1925.
    4.4 C. R. Ryan, and S. R. Day, “Soil-cement-bentonite slurry walls,” Geo. Spec. Pub. 1161 (2002) 713-727.
    4.5 Y. Fukushima, and S. Inagaki, “Synthesis of an Intercalated Compound of Montmorillonite and 6-polyamide,” J. Inclu. Phen. 5 (1987) 473-482.
    4.6 P. C. Lebaron, Z. Wang, and T. J. Pinnavaia, “Polymer-layered silicate nanocomposites: an overview,” Appl. Clay Sci. 15 (1999) 11-29.
    4.7 E. Giannelis, “Polymer layered silicate nanocomposites,” Adv. Mater. 8 (1996) 29-31.
    4.8 M. Alexandre, and P. Dubois, “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials,” Mater. Sci. Eng. 28 (2000) 1-63.
    4.9 C. He, E. Makovicky, and B. Osbaeck, “Thermal treatment and pozzolanic activity of Na- and Ca-montmorillonite,” Appl. Clay Sci. 10 (1996) 351-368.
    4.10 X. Zhang, W. Chang, T. Zhang, and C. K. Ong, “Nanostructure of calcium silicate hydrate gels in cement paste,” J. Am. Cera. Soc. 83 (2000) 2600-2604.
    4.11 Y. Wang, S. Y. Shen, G. S. Gai, and C. S. Fu, “Preparation and major properties of montmorillonite/epoxy nanocomposites,” Key Eng. Mater. 249 (2003) 413-416.
    4.12 M. Rodlert, C. J. G. Plummer, L. Garamszegi, Y. Leterrier, H. J. M. Grunbauer, and J. E. Manson, “Hyperbranched polymer/ montmorillonite clay nanocomposites,” Polymer 45 (2004) 949-960.
    4.13 W. Xie, J. M. Hwu, G. J. Jiang, T. M. Buthelezi, and W. P. Pan, “A study of the effect of surfactants on the properties of polystyrene- montmorillonite nanocomposites,” Polymer Eng. Sci. 43 (2003) 214-222.
    4.14 W. Wang, X. Zeng, G. Wang, and J. Chen, “Preparation and properties of polypropylene filled with organo- montmorillonite nanocomposites,” J. Appl. Polymer Sci. 100 (2006) 2875-2880.
    4.15 A. Rehab, and N. Salahuddin, “Nanocomposite materials based on polyurethane intercalated into montmorillonite clay,” Mater. Sci. Eng. A 399 (2005) 368-376.
    4.16 G. Xu, J. Zhang, and G. Song, “Effect of complexation on the zeta potential of silica powder,” Powder Tech. 134 (2003) 218-222.
    4.17 H. Sieger, M. Winterer, H Muhlenweg, G. Michael, and H. Hahn, “Controlling surface composition and zeta potential of chemical vapor synthesized alumina-silica nanoparticles,” Chem. Vap. Depos. 10 (2004) 71-76.
    4.18 H. Zhang, X. Jia, Z. Liu, and W. Li, “Dispersion and mechanic interactions of nanocrystalline Al2O3-SiO2 powder,” J. Cn. Ceram. Soc. 31 (2003) 928-933.
    4.19 Joint Committee on Powder Diffraction Standards, JCPDS International center for doffraction data (2000).
    4.20 W. Sha, E. A. O’Neill, and Z. Guo, “Differential scanning calorimetry study of ordinary Portland cement,” Cem. Concr. Res. 29 (1999) 1487-1489.
    4.21 W. Sha, and G. B. Pereira, “Differential scanning calorimetry study of ordinary Portland cement containing metakaolin and theoretical approach of metakaolin activity,” Cem. Concr. Comp. 23 (2001) 455-461.
    4.22 S. Kurajica, A. Bezjak, and E. Tkalcec, “Resolution of overlapping peaks and the determination of kinetic parameters for the crystallization of multicomponenet system from DTA or DSC curve: I. Non-isothermal kinetics,” Therm. Acta. 288 (1996) 123-135.
    4.23 J. F. Moulder, W. F. Stickle, P.E. Sobol, and K.D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy,” Physical Electronics, (1995).
    4.24 E. Lippmaa, M. Magi, A. Samoson, G. Engelhardt, and A. R. Grimmer, “Structure studies of silicates by solid-state high-resolution 29Si NMR,” J. Am. Ceram. Soc. 102 (1980) 4889-4893.
    4.25 T. Ida, H. Hibino, and H. Toraya, “Peak profile function for synchrotron X-ray diffractometry,” J. Appl. Cryst. 34 (2001) 144-151.
    4.26 H. Justnes, I. Meland, J.O. Bjoergum, J. Krane, and T. Skjetne, “NMR – A powerful tool in cement and concrete research,” SINTEF FCB Report (1989) 1-22.
    4.27 K. Johansson, C. Larsson, O.N. Antzutkin, W. Forsling, H.R. Kota, and V. Ronin, “Kinetics of the hydration reaction in the cement paste with mechanochemically modified cement 29Si magic-angle-spinning NMR study,” Cem. Concr. Res. 29 (1999) 1575-1581.
    4.28 X. Cong, and R.J. Kirkpatrick, “29Si and 17O NMR investigation of the structure of some crystalline calcium silicate hydrates,” Adv. Cem. Bas. Mater. 3 (1996) 133-143.
    4.29 M. W. Cole, N. S. Holter, and P. Pfeifer, “Henry’s law of adsorption on a fractal surface,” Phys. Rev. B33 (1986) 8806-8809.
    4.30 P. Pfeifer, Y. J. Wu, M. W. Cole, and J. Krim, “Multilayer adsorption on a fractally rough surface,” Phys. Rev. Lett. 62 (1989) 1997-2000.
    4.31 P. Pfeifer, and M. W. Cole, “Fractals in surface science: scattering and thermodynamics of adsorbed films II,” New J. Chem. 14 (1990) 221-232.
    4.32 B. Sahouli, S. Blacher, and F. Brouers, “Applicability of the fractal FHH equation,” Langmuir 13 (1997) 4391-4394.
    4.33 D. N. Winslow, and S. Diamond, “A mercury porosimetry study of the evaluation of porosity in Portland cement,” J. Mater. 5 (1970) 564-585.
    4.34 A. K. Suryavanshi, and R.N. Swamy, “Influence of penetrating chlorides on the pore structure of structural concrete,” Cem. Concr. Aggre. 20 (1998) 169-179.
    4.35 M. Maage, “Frost resistance and pore size distribution in bricks,” Mater. Struct. 17 (1984) 345-350.
    4.36 R. A. Cook, and K. C. Hover, “Mercury porosimetry of cement-based materials and associated correction factors,” ACI Mater. J. 90 (1993) 152-161.
    4.37 X. Ji, S. Y. N. Chan, and N. Feng, “Fractal model for simulating the space-filling process of cement hydrates and fractal dimensions of pore structure of cement-based materials,” Cem. Concr. Res. 27 (1997) 1691-1699.

    第五章
    5.1 Park, K. D. Kim, and H. T. Kim, “Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles,” Colloids Surf. A Physicochem. Eng. Aspects 197 (2002) 7-17.
    5.2 張立德、牟季美,「奈米材料和奈米結構」,滄海,(2002)。
    5.3 S. Kang, S. I. Hong, C. R. Choe, M. Park, S. Rim, and J. Kim, “Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process,” Polymer 42 (2001) 879-887.
    5.4 E. Reynaud, T. Jouen, C. Gauthier, G. Vigier, and J. Varlet, “Nanofillers in polymeric matrix: a study on silica reinforced PA6,” Polymer 42 (2001) 8759-8768.
    5.5 S. Zhou, L. Wu, J. Sun, and W. Shen, “Effect of nanosilica on the properties of polyester-based polyurethane,” J. Appl. Ploym. 88 (2003) 189-193.
    5.6 T. Kashiwagi, A. B. Morgan, J. M. Antonucci, M. R. Vanlandingham, R. H. Harris, W. H. Awad, and J. R. Shields, “Thermal and flammability properties of a silica-poly(methylmethacrylate) nanocomposite,” J. Appl. Ploym. 89 (2003) 2072-2078.
    5.7 H. Li, H. Xiao, J. Yuan, and J. Ou, “Microstructure of cement mortar with nano-particles,” Composites: Part B 35 (2004) 185-189.
    5.8 G. Li, “Properties of high-volume fly ash concrete incorporating nano-SiO2,” Cem. Concr. Res. 34 (2004) 1043-1049.
    5.9 M. Collepardi, J. J. O. Olagot, U. Skarp, and R. Troli, “Influence of amorphous colloidal silica on the properties of self-compacting concrete, Proceedings of the International Conference-Challenges in Concrete Construction,” Dundee, Scotland, UK, 9-11, Sep. (2002) 473-483.
    5.10 S. Chandra, and H. Bergqvist, “Interation of silica colloid with Portland cement,” 10th International Congress on the Chemistry of Cement, Vol 3 (1997).
    5.11 P. M. Gallagher, and J. K. Mitchell, “Influence of colloidal silica grout on liquefaction potential and cyclic undrained behavior of loose sand,” Soil Dynamic Earthquake Eng. 22 (2002) 1017-1026.
    5.12 P. M. Gallagher, “Passive site remediation for mitigation of liquefaction risk,” Dissertation of Virginia Polytechnic Institute and State University(Advisor: J. K. Mitchell) (2000).

    第六章
    6.1 楊國銘,「添加零維奈米材料對水泥漿及水泥砂漿材料性質之影響」,國立台灣科技大學碩士論文(指導教授:張大鵬博士),(2004)。
    6.2 呂添民,「添加奈米矽粉之水泥砂漿力學性質與微觀結構」,國立台灣科技大學碩士論文(指導教授:張大鵬博士),(2005)。
    6.3 N. Q. Feng, G. Z. Li, and X W. Zhang, “High-strength and flowing concrete with a zeolitic mineral admixture,” Cem. Concr. Aggre. 12 (1990) 61-69.
    6.4 R. A. Cook, and K. C. Hover, “Mercury porosimetry of hardend cement pastes,” Cem. Concr. Res. 29 (1999) 933-943.

    第七章
    7.1 P. M. Gallagher, “Passive site remediation for mitigation of liquefaction risk,” Dissertation of Virginia Polytechnic Institute and State University (Advisor: J. K. Mitchell) (2000).
    7.2 R. A. Cook, and K. C. Hover, “Mercury porosimetry of cement-based materials and associated correction factors,” ACI Mater. J. 90 (1993) 152-161.
    7.3 K. van Breugel, “Numerical simulation of hydration and microstructural development in hardening cement-based materials (II) Applications,” Cem. Concr. Res. 25 (1995) 522-530.
    7.4 G. de Schutter, and L. Taerwe, “General hydration model for Portland cement and blast furnace slag cement,” Cem. Concr. Res. 25 (1995) 593-604.
    7.5 R. Vedalakshmi, A. Sundara Raj, S. Srinivasan, and K. Ganesh Babu, “Quantification of htdrated cement products of blended cements in low and medium strength concrete using TG and DTA technique,” Thermochim. Acta 407 (2003) 49-60.
    7.6 A. Moropoulou, A. Bakolas, and E. Aggelakopoulou, “Evaluation of pozzolanic activity of natural and artificial pozzolans by thermal analysis,” Thermochim. Acta 420 (2004) 135-140.
    7.7 J. Dweck. P. M. Buchler, A. Camlos, V. Coelho, and F. K. Cantledge, “Hydration of a Portland cement blended with calcium carbonate,” Thermochim. Acta 346 (2000) 105-113.
    7.8 S. Fitzgerald, D. Neumann, J. Rush, D. Bentz, and R. A. Livingston, “An in-situ quasi elastic neutron scattering study of the hydration of tricalcium silicate,” Chem of Mater. 10 (1998) 397-402.
    7.9 J. J. Thomas, and H. M. Jennings, “Effects of DO and mixing on the early hydration kinetics of tricalcium silicate,” Chem of Mater 11 (1999) 1907-1914.
    7.10 R. Krstulovic, and P. Dabic, “A conceptual model of the cement hydration process,” Cem. Concr. Res. 30 (2000) 693-698.
    7.11 P. Dabic, R. Krstulovic, and D. Rusic, “A new approach in mathematical modelling of cement hydration development,” Cem. Concr. Res. 30 (2000) 1017-1021.
    7.12 J. Zelic, D. Rusic, D. Veza, and R. Krstulovic, “The role of silica fume in the kinetics and mechanisms during the early stage of cement hydration,” Cem. Concr. Res. 30 (2000) 1655-1662.
    7.13 J. J. Thomas, H. M. Jennings, and A. J. Allen, “The surface area of cement paste as measured by neutron scattering-Evidence for two C-S-H morphologies,” Cem. Concr. Res. 28 (1998) 897-905.

    QR CODE