簡易檢索 / 詳目顯示

研究生: 李振暉
Chen-Hei Li
論文名稱: 共吸附劑提升水相CuInS2量子點敏化太陽能電池之效率
Thioalkyl acid co-adsorbent to enhance the efficiency of CuInS2 quantum dots-sensitized solar cell
指導教授: 張家耀
Jia-yaw Chang
口試委員: 何郡軒
Jinn-Hsuan Ho
陳志平
Chih-Ping Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 100
中文關鍵詞: 量子點敏化太陽能電池水相量子點共吸附劑
外文關鍵詞: Quantum dots sensitized solar cell, water based, co-adsorbent
相關次數: 點閱:292下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用極性溶液易吸收微波特性,將低毒性金屬前驅物與雙功能分子共反應,以微波輔助直接一步合成出三元素半導體CuInS2水相量子點,大幅縮短反應時間,此種技術與傳統油相製程不同的是所合成出來的量子點在過程中無須在真空環境下,不需進行相轉移過程,且減少大量有機溶劑,對環境較有善。透過具有巰基分子作為共吸附劑與水相量子點混合而成量子點敏化水溶液,並將TiO2光電極浸泡於量子點敏化溶液,接著再用連續離子吸附與反應沉積ZnS鈍化層,與實驗室所發展的Cu2S背電極組裝成電池後,光電轉換效率可達4.92%,並以電化學阻抗分析與光強度調製光電流/光電壓分析儀分析不同雙功能分子製成的水相CIS量子點,探討水相量子點與TiO2之間的電子傳遞動力學。


    Recently, synthesis of colloidal QDs by microwave irradiation as heating source have been studied due to the inherently different mechanisms of heat transfer, when compared to solvent convection based heating. Under microwave irradiation, polar precursor molecules directly absorb the microwave energy and heats up more efficiently. Here we present a simple, rapid and effective method of microwave-assisted synthetic route for the preparation of water-soluble CuInS2 quantum dots (CIS QDs) with thioalkyl compound as co-adsorbent for QDSSC. Briefly, the solar cell were constructed with CuInS2 quantum dots, thioalkyl compound as co-adsorbent deposited on TiO2 film. Further ZnS deposited as passivation layer by successive ionic layer adsorption and reaction (SILAR). Combining the Cu2S spin coated counter electrode achieved an improved short circuit current density of 14.84 mA/cm2, open voltage of 630 mV and power conversion efficiency of 4.92% at one sun (AM 1.5 G, 100 mW/cm2). Electrochemical impedance spectroscopy (EIS), intensity modulated photocurrent / photovoltage spectroscopy (IMPS/ IMVS) measurement water based CIS Qds made with different bifunctional molecules, discussion the electron transport time and electron lifetime between TiO2 and CIS QDs.

    總目錄 摘要 Abstract 總目錄 表目錄 圖目錄 第一章 緒論 1.1 前言 1.2 太陽能電池之發展概況 1.3 研究動機與內容 第二章 文獻回顧 2.1 量子點敏化太陽能電池(Quantum Dots of Sensitized Solar cell) 2.1.1 起源與發展 2.1.2 元件介紹 2.1.3 半導體奈米材料之特性 2.1.4 量子點敏化太陽能電池之工作原理 2.1.5 量子點敏化劑之製備 第三章 實驗方法與原理 3.1 實驗藥品 3.2 實驗器材 3.3 整體實驗概觀 3.4 導電玻璃基板清洗 3.5 光電極之二氧化鈦薄膜製備 3.6 量子點敏化劑之製備與吸附 3.5.1 水相量子點敏化劑CuInS2合成 3.5.2 水相量子點敏化劑CuInS2吸附 3.5.3 ZnS鈍化層沉積 3.7 背電極製備 3.8 多硫化物電解液配製 3.9 元件封裝 第四章 材料分析與元件檢測 4.1 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 4.2 穿透式電子顯微鏡(Transmission Electron Microscopy,TEM) 4.3 X射線繞射分析儀(X-ray Diffraction,XRD) 4.4 紫外光-可見光吸收光譜儀(UV-Visible Spectroscopy,UV-Vis) 4.5 光激發螢光分析儀(Photoluminescence Spectroscopy,PL) 4.6 載子生命週期量測系統 (Carrier Lifetime Analysis System) 4.7 太陽電池光電轉換效率分析 4.8 入射光電轉換效率(Incident photon to charge carrier efficiency,IPCE) 4.9 電化學阻抗分析(Electrochemical Impedance Spectroscopy,EIS) 4.10 光強度調制光電流/光電壓分析儀(Intensity Modulated Photocurrent/Photovoltage Spectroscopy,IMPS/IMVS) 第五章 實驗結果與討論 5.1 水相CuInS2結構分析 5.2 水相CIS光學性質 5.3 QDSSC元件分析 5.3.1 光電極TiO2薄膜 5.3.2 巰積分子共吸附劑的光電轉換效率分析 5.3.3 常見雙功能分子作為共吸附劑的光電轉換效率分析 5.3.4 不同濃度之巰基分子水溶液之光電轉換效率分析 5.3.5 浸泡時間與光電轉換效率之分析 5.3.6 入射光電轉換效率(Incident photon to charge carrier efficiency,IPCE) 5.3.7 不同雙功能分子製備水相CIS量子點之光電轉換效率分析 5.3.8 不同雙功能分子製備水相CIS量子點之載子生命周期分析 5.3.9 電化學阻抗分析(Electrochemical Impedance Spectroscopy,EIS) 5.3.10 光強度調制光電流/光電壓分析儀(Intensity Modulated Photocurrent/Photovoltage Spectroscopy,IMPS/IMVS) 5.3.11 光電極薄膜之TEM分析 5.3.12 水相CdSe與AgInS2量子點之光電轉換效率分析 第六章 結論與未來展望 參考文獻

    [1] Tyler Miller Jr G (2007) Living in the environment. Thomson Brooks/Cole, London
    [2] United Nations Framework Convention on Climate Change (Text) (1992) (UNEP/WMO, Climate Change Secretariat, Geneva, 1992)
    [3] J. Barbe, Chem. Soc. Rev., 2009, 38, 185.
    [4] B. O’Regan and M. Grätzel, Nature, 1991, 353, 737.
    [5] E. Centurioni and D. Iencinella, IEEE Electron Device Lett., 2003, 24, 177.
    [6] D. Abou-Ras, D. Rudmann, G. Kostorz, S. Spiering, M. Powalla and A. N. Tiwari, J. Appl. Phys., 2005, 97, 084908.
    [7] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, Nature, 1976, 261, 402.
    [8] W. Shockley and H. J. Queisser, J. Appl. Phys., 1961, 32, 510.
    [9] A. L. Rogach, L. Katsikas, A. Kornowski, D. Su, A. Eychmüller, H. Weller and Ber. Bunsen, Phys. Chem., 1996, 100, 1772.
    [10] A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich and J. F. Donegan, J. Phys. Chem. C, 2007, 111, 14628.
    [11] T. Takagahara and K. Takeda, Phys. Rev. B, 1992, 46, 15578.
    [12] S. Kan, T. Mokari, E. Rothenberg and U. Banin, Nat. Mater., 2003, 2, 155.
    [13] Q. Shen, J. Kobayashi, L. J. Diguna and T. Toyoda, J. Appl. Phys., 2008, 103, 084304.
    [14] G. Smestad, C. Bignozzi and R. Argazzi, Sol. Energy Mater. Sol. Cells, 1994, 32, 259.
    [15] M. C. Hanna and A. J. Nozik, J. Appl. Phys., 2006, 100, 74510.
    [16] J. Desilvestro, M. Grätzel, L. Kavan, J Moser and J. Augustynski, J. Am. Chem. Soc., 1985, 107, 2988.
    [17] S. Ferrere, A. Zaban and B. A. Gregg, J. Phys. Chem. B, 1997, 101, 4490.
    [18] K. Keis, L. Vayssiers, S. E. Linfquist and A. Hagfeldt, Nanostruct. Mater., 1999, 12, 487.
    [19] M. Y. Zayat, A. O. Saed, M. S. Dessouki, Int. J. Hydrogen Energy, 1998, 23, 259.
    [20] J. H. Bang and P. V. Kamat, ACS Nano, 2009, 3, 1467.
    [21] L. Li, X. Yang, J. Zhao, J. Gao, A. Hagfeldt and L. Sun, J. Mater. Chem., 2011, 21, 5573.
    [22] L. Li, X. Yang, J. GaO, H. Tian, J. Zhao, A. Hagfeldt and L. Sun, J. Am. Chem. Soc., 2011, 133, 8458.
    [23] D. Reyes-Coronado, G. Rodríguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. d. Coss and G. Oskam, Nanotechnology, 2008, 19, 145605.
    [24] Z. Zhang, S. Ito, B. O’Regan, D.Kuang, S. M. Zakeeruddin, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, R. Humphry-Baker, T. Koyanagi, T. Mizuno and M. Grätzel, Z. Phys. Chem., 2007, 221, 319.
    [25] Z. Du, H. Zhang, H. Bao and X. Zhong, J. Mater. Chem. A, 2014, 2, 13033
    [26] Y. Xu and M. A. A. Schoonen, Am. Mineral., 2000, 85, 543.
    [27] 張正華, 李陵嵐, 葉楚平, 楊平華 and 馬振基, in 有機與塑膠太陽能電池, ed. 龐君豪, 五南圖書出版股份有限公司, 台灣, Edition edn., 2007.
    [28] Greijer, R. Agrell, J. Lindgren, A. Hagfeldt, Photochem. Photobiol. A, 2004, 164, 23.
    [29] M. Grätzel, Inorg. Chem., 2005, 44, 6841.
    [30] A. Hagfeldt, M. Grätzel, Acc. Chem. Res., 2000, 33, 269.
    [31] S.-W. Kim and W. Kwon, Korean J. Chem. Eng., 2011, 28, 1481.
    [32] Z. Pan, I. Mora-Seró, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. Zhong and J. Bisquert, J. Am. Chem. Soc., 2014, 136, 9203.
    [33] X. Song, M. Wang, J. Deng, Z. Yang, C. Ran, X. Zhang and X. Yao, ACS Appl. Mater. Interfaces, 2013, 5, 5139.
    [34] Z. Pan, K. Zhao, J. Wang, H. Zhang, Y. Feng and X. Zhong, ACS Nano, 2013, 7, 5215.
    [35] J. Luo, H. Wei, F. Li, Q. Huang, D. Li, Y. Luo, Q. Meng, Chem. Commun., 2014, 50, 3464.
    [36] G. Hodes, J. Phys. Chem. C, 2008, 112, 17778.
    [37] H. J. Lee, J. -H, Yum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. I. Seok, M. Grätzel and M. K. Nazeeruddin, J. Phys. Chem. C, 2008, 112, 11600.
    [38] H. J. Lee, P. Chen, S. -J. Moon, F. Sauvage, K. Sivula, T. Bessho, D. R. Gramelin, P. Comte, S. M. Zakeeruddin, S. I. Seok, M. Grätzel and M. K. Nazeeruddin, Langmuir, 2009, 25, 7602.
    [39] H. J. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel and M. K. Nazeeruddin, Nano Lett., 2009, 9, 4221.
    [40] V. Chakrapani, D. Baker and P. V. Kamat, J. Am. Chem. Soc., 2011, 133, 9607.
    [41] G. Pedro, C. Sima, G. Marzari, P. P. Boix, S. Giménez, Q. Shen, T. Dittrich and I. Mora-Seró, Phys. Chem. Chem. Phys., 2013, 15, 13835.
    [42] I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gomez and J. Bisquert, Nanotechnology, 2008, 19, 424007.
    [43] M. Shalom, S. Dor, S. Rühle, L. Grinis and A. Zaban, J. Phys. Chem. C, 2009, 113, 3895.
    [44] G. Hodes, J. Manassen and D. Cahen, J. Electrochem. Soc., 1980, 127, 544.
    [45] Z. Tachan, M. Shalom, I. Hod, S. Ruhle, S. Tirosh, A. Zaban, J. Phys. Chem. C, 2011, 115, 6162.
    [46] H. M. Choi, I. A. Ji and J. H. Band, ACS Appl. Mater. Interfaces, 2014, 6, 2335.
    [47] H. Zhang, H. Bao and X. Zhong, J. Mater. Chem. A, 2015, 3, 6557.
    [48] Y. Wang and N. Herron, J. Phys. Chem., 1991, 95, 525.
    [49] M. Green, Curr. Opin. Solid State Mater. Sci., 2002, 6, 355.
    [50] Dr. D. Talapin, University of Hamburg, http://www.chemie.uni-hamburg.de/pc/weller/index_e.html
    [51] Nonosys, http://www.nanosysinc.com/what-we-do/quantum-dots/
    [52] M. Samadpour, S. Giménez, P. P. Boix, Q. Shen, M. E. Calvo, N. Taghavinia, A. I. zad, T. Toyoda, H. Míguez and I. Mora-Seró, Electrochim. Acta, 2012, 75, 139.
    [53] S. Giménez, X. Xu, T. Lana-Villarreal, R. Gómez, S. Agouram, V. Muñoz-Sanjosé and I. Mora-Seró, J. Appl. Phys., 2010, 108, 064310.
    [54] R. Vogel, P. Hoyer and H. Weller, J. Phys. Chem., 1994, 98, 3183.
    [55] S. C. Lin, Y. L. Lee, C. H. Chang, Y. J. Shen and Y. M. Yang, Appl. Phys. Lett., 2007, 90, 143517.
    [56] X. Y. Yu, J. Y. Liao, K. Q. Qiu, D. B. Kuang and C. Y. Su, ACS Nano, 2011, 5, 9494.
    [57] Q. Shen, J. Kobayashi, L. J. Diguna and T. Toyoda, J. Appl. Phys., 2008, 103, 084304.
    [58] D. R. Pernik, K. Tvrdy, J. G. Radich and P. V. Kamat, J. Phys. Chem. C, 2011, 115 , 13511.
    [59] N. Guijarro, T. Lana-Villarreal, I. Mora-Seró, J. Bisquert and R. Gómez, J. Phys. Chem. C, 2009, 113, 4208.
    [60] E. Martínez-Ferrero, I. Mora Seró, J. Albero, S. Giménez, J. Bisquertb and E. Palomares, Phys. Chem. Chem. Phys., 2010,12, 2819.
    [61] Z. Pan, H. Zhang, K.Cheng, Y. Hou, J. Hua and X. Zhong, ACS Nano, 2012, 6, 3982.
    [62] H. Zhang, K. Cheng, Y. M. Hou, Z. Fang, Z. X. Pan, W. J. Wu, J. L. Hua and X. Zhong, Chem. Commun., 2012, 48, 11235.
    [63] R. S. Mane, C. D. Lokhande, Mater. Chem. Phys., 2000, 65, 1.
    [64] T. P. Niesen and M.R. D. Guire, Solid State Ionics, 2002, 151, 61.
    [65] H. M. Pathan and C. D. Lokhande, Bull. Mater. Sci., 2004, 27, 85.
    [66] C. H. Chang and Y. L. Lee, Appl. Phys. Lett., 2007, 91, 053503.
    [67] S.M. Pawar, B.S. Pawar, J.H. Kim, O. S. Joo and C.D. Lokhande, Curr. Appl. Phys., 2011, 11, 117.
    [68] S. N. Sahu, J. Mater. Sci. Lett., 1989, 8, 533.
    [69] P. Allongue, E. Souteyrand, J. Electroanal. Chem., 1989, 269, 361.
    [70] J. A. Switzer, C. J. Hung, E. W. Bohannan, M. G. Shumsky, T. D. Golden and D. C. Van Aken, Adv. Mater., 1997, 9 334.
    [71] G. Riveros, H. Gomez, R. Henrı́quez, R. Schrebler, R. E. Marotti, E.A. Dalchiele, Sol. Energy Mater. Sol. Cells, 2001, 70, 255.
    [72] C. Lévy-Clément, A. Katty, S. Bastide, F. Zenia, I. Mora and V. Munoz-Sanjose, Physica E, 2002, 14, 229.
    [73] C. Lévy-Clément, R. Tena-Zaera, M. A. Ryan, A. Katty, G. Hodes, Adv. Mater., 2005, 17, 1512.
    [74] M. A. Hossain, J. R. Jennings, Z. Y. Koh and Q. Wang, ACS Nano, 2011, 5, 3172.
    [75] F. Sauvage, C. Davoisne, L. Philippe and J. Elias, Nanotechnology, 2012, 23, 395401.
    [76] M. A. Anderson, S. Gorer and R. M. Penner, J. Phys. Chem. B, 1997, 101, 5895.
    [77] I. P. Liu, C. W. Chang, H. Teng and Y. L. Lee, ACS Appl. Mater. Interfaces, 2014, 6, 19378.
    [78] A. L. Rogach, A. Kornowski, M. Gao, A. Eychmüller and H.Weller, J. Phys. Chem. B, 1999, 103 , 3065.
    [79] L. Manna, D. J. Milliron, A. Meisel, E. C. Scher and A. P. Alivisatos, Nat. Mater., 2003, 2, 382.
    [80] S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda and J. Bisquert, Nanotechnology, 2009, 20, 295204.
    [81] H. L. Chou,C. H. Tseng, K. C. Pillai, B. J. Hwang and L. Y. Chen, Nanoscale, 2010, 2, 2679.
    [82] H. Zhang, K. Cheng, Y. M. Hou, Z. Fang, Z. X. Pan, W. J. Wu, J. L. Hua and X. Zhong, Chem. Commun., 2012, 48, 11235.
    [83] S. Jiao, Q. Shen, I. Mora-Seró, J. Wang, Z. Pan, K. Zhao, Y. Kuga, X. Zhong, ACS Nano, 2015, 9, 908.
    [84] J. Yang, T. Oshima, W. Yindeesuk, Z. Pan, X. Zhong, Q. Shen, J. Mater. Chem. A, 2014, 2, 20882.
    [85] K. M. Coughlin, J. S. Nevins and D. F. Watson, ACS Appl. Mater. Interfaces, 2013, 5, 8649.
    [86] X. Hu, Q. Zhang, X. Huang, D. Li, Y. Luo and Q. Meng, J. Mater. Chem., 2011, 21, 15903.
    [87] J. Luo, H. Wei, Q. Huang, X. Hu, H. Zhao, R. Y. D. Li, Y. Luo, Q. Meng, Chem. Commun., 2013, 49, 3881.
    [88] J. Luo, H. Wei, F. Li, Q. Huang, D. Li, Y. Luo and Q. Meng, Chem. Commun., 2014, 50, 3464.
    [89] H. Wang, C. Luan, X. Xu, S. V. Kerchaw and A. L. Rogach, J. Phys. Chem. C, 2012, 116, 484.
    [90] Y. S. Chen, H. Choi and P. V. Kamat, J. Am. Chem. Soc., 2013, 135, 8822.
    [91] J. Aldana, Y. A. Wang and X. Peng, J. Am. Chem. Soc., 2001, 123, 8844.
    [92] http://www.ammrf.org.au/myscope/sem/practice/principles/layout.php
    [93] http://www.hk-phy.org/atomic_world/tem/tem02_e.html
    [94] http://www.ccut.edu.tw/teachers/wentse/downloads/1031009-1.pdf
    [95] 謝嘉民,賴一凡,林永昌,枋志堯,奈米通訊,第十二卷第二期,28。
    [96] L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw, I. Uhlendorf, J. Phys. Chem. B, 1997, 101, 10281.
    [97] L.M. Peter and K.G.U. Wijayantha, Electrochem. Commun., 1999, 1, 576.
    [98] J. Krüger, R. Plass, M. Grätzel, P. J. Cameron and L. M. Peter, J. Phys. Chem. B, 2003, 107, 7536.
    [99] L.M. Peter and K.G.U. Wijayantha, Electrochim. Acta, 2000, 45, 4543.
    [100] K. Zhu, N. R. Neale, L. Miedaner and A. J. Frank, Nano Lett., 2007, 7, 69.
    [101] S. Sadhu and A. Patra, J. Phys. Chem.C, 2012, 116, 15167.
    [102] W.-D. Xiang, H.-L. Yang, X.-J. Liang, J.-S. Zhong, J. Wang, L. Luo and C.-P. Xie, J. Mater. Chem. C, 2013, 1, 2014.
    [103] N. Guijarro, T. Lana-Villarreal, Q. Shen, T. Toyoda, R. Gómez, J. Phys. Chem. C, 2010, 114, 21928.
    [104] N. Guijarro, Q. Shen, S. Gime´nez, I. Mora-Seró, J. Bisquert, T. Lana-Villarreal, T. Toyoda and R. Gómez, J. Phys. Chem. C, 2010, 114, 22352.

    無法下載圖示 全文公開日期 2020/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE