簡易檢索 / 詳目顯示

研究生: 劉羿晟
Yi-Cheng Liu
論文名稱: 以人體下肢電腦數值分析模型評估全人工踝關節置換術之生物力學
Biomechanical Investigations of Total Ankle Replacement Prostheses Using a Human Lower Extremity Model
指導教授: 徐慶琪
Ching-Chi Hsu
口試委員: 趙振綱
Ching-Kong Chao
張定國
Ding-Guo Jang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 80
中文關鍵詞: 全人工踝關節置換術足踝姿勢有限元素分析植體失效植體穩定性
外文關鍵詞: Total ankle replacement, Ankle postures, Finite element analysis, Implant failure, Stability
相關次數: 點閱:275下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人工踝關節置換術是用於治療足踝相關疾病的手術,然而目前對於全人工踝關節置換術主要的評估方式來自於臨床結果。雖然先前研究開發的骨植入物模型提供可參考生物力學,但它們的數值模型可能過於簡單化。因此本研究的目的是建立更完整下肢模型,並透過有限元素法探討不同足踝姿勢時全人工踝關節置換術的生物力學。
    本研究依序完成完整足踝模型之建構、踝關節置換假體模型之建構與植入踝關節假體至足踝模型中,接著使用ANSYS Workbench進行模擬,本研究使用不同類型的人工踝關節假體,並且各款式擁有不同脛骨元件設計包括:平面、彎曲與傾斜,針對五種不同足踝姿勢包括:正常站立、外翻、內翻、足屈與背屈,探討穩定度、脛骨應力、距骨應力、脛骨元件應力、內襯元件應力與距骨元件應力,詳細的探討植入物與骨骼應力。
    本研究結果顯示不同的姿勢確實對於植入物有一定程度的影響,多方考量不同姿勢有助於更全面評估不同人工踝關節假體的設計優勢,內翻與外翻確實對於特定類型的人工踝關節假體有相當的風險存在,使用平面設計的脛骨元件對於脛骨應力與脛骨元件應力有較好的表現,然而內襯元件的應力為最重要的參考指標。本研究的結果能夠直接提供骨科臨床醫生相關建議,幫助他們了解全人工踝關節置換術之生物力學性能。


    Total ankle replacement surgery has been used to treat ankle joint disorders. However, the biomechanical performances of total ankle prostheses were mainly evaluated according to the outcomes of clinical applications. Although the bone-implant constructs developed by the previous studies could provide referable biomechanical outcomes, their numerical models may be oversimplified. Thus, the purpose of this study was to evaluate the biomechanical performances of the ankle joint designs with different ankle postures using finite element methods.
    Three-dimensional finite element models of human lower extremity were developed using ANSYS Workbench 17. Different designs of the total ankle replacement prostheses (flat, curved, and tilted designs) under five types of ankle postures (standing, eversion, inversion, dorsiflexion, and plantarflexion) were evaluated.
    The results showed that the ankle postures played an important role on the effects of the bone-implant construct stability, the bone stress, and the implant stress. The ankle joint with an eversion or inversion posture would deteriorate the biomechanical performances of the total ankle replacement prostheses. The outcomes of the present study could directly provide the surgical suggestion to orthopedic surgeons and help them to understand the biomechanics of total ankle replacement.

    摘要-I Abstract-II 致謝-III 目錄-IV 圖目錄-VII 表目錄-XI 第一章 緒論-1 1.1動機與目的-1 1.2足踝的解剖構造-2 1.3全人工踝關節置換手術-4 1.4文獻回顧-6 1.5本文架構-19 第二章 材料與方法-20 2.1全人工踝關節置換術有限元素模型建立-20 2.1.1足踝有限元素模型建立-20 2.1.2踝關節置換假體模型建立-28 2.1.3踝關節假體植入方式-30 2.2有限元素模擬分析-31 2.2.1材料參數-32 2.2.2網格設定-33 2.2.3接觸介面條件-35 2.2.4邊界條件-36 2.2.5生物力學性能準則-37 第三章 結果-39 3.1收斂性分析結果-39 3.2正常站立與內外翻姿勢下應力分佈結果-42 3.2.1脛骨應力分佈結果-42 3.2.2脛骨元件應力分佈結果-43 3.2.3內襯元件應力分佈結果-44 3.2.4距骨元件應力分佈結果-45 3.2.5距骨骨應力分佈結果-46 3.3 FAFB結果-46 3.3.1位移結果-46 3.3.2骨應力結果-47 3.3.3植入物應力結果-48 3.4 VAFB結果-50 3.4.1位移結果-50 3.4.2骨應力結果-50 3.4.3植入物應力結果-51 3.5 VAMB結果-53 3.5.1位移結果-53 3.5.2骨應力結果-53 3.5.3植入物應力結果-54 3.6綜合結果-55 3.6.1正常站立、外翻與內翻-55 3.6.2 正常站立、足屈與背屈-60 第四章 討論與研究限制-66 4.1研究結果討論-66 4.1.1有限元素模型建立與設定討論-66 4.1.2不同姿勢對於踝關節置換生物力學討論-67 4.1.3不同人工踝關節假體設計討論-69 4.2研究限制-72 第五章 結論與未來展望-74 5.1結論-74 5.2未來展望-76 參考文獻-77

    [1]J. M. Michael, A. Golshani, S. Gargac, and T. Goswami, “Biomechanics of the ankle joint and clinical outcomes of total ankle replacement,” J Mech Behav Biomed Mater, vol. 1, no. 4, pp. 276-94, Oct, 2008.
    [2]M. K. Steven, “Applications of UHMWPE in total ankle replacements Chapyer 11,” pp. 153-169, 2015.
    [3]C. W. Reb, J. E. McAlister, C. F. Hyer, and G. C. Berlet, “Posterior ankle structure injury during total ankle replacement,” J Foot Ankle Surg, vol. 55, no. 5, pp. 931-4, Sep-Oct, 2016.
    [4]Y. R. Kerkhoff, N. M. Kosse, and J. W. Louwerens, “Short term results of the mobility total ankle system: clinical and radiographic outcome,” Foot Ankle Surg, vol. 22, no. 3, pp. 152-7, Sep, 2016.
    [5]T. S. Roukis, and M. A. Prissel, “Reverse evans peroneus brevis medial ankle stabilization for balancing valgus ankle contracture during total ankle replacement,” J Foot Ankle Surg, vol. 53, no. 4, pp. 497-502, Jul-Aug, 2014.
    [6]M. A. Baldwin, C. W. Clary, C. K. Fitzpatrick, J. S. Deacy, L. P. Maletsky, and P. J. Rullkoetter, “Dynamic finite element knee simulation for evaluation of knee replacement mechanics,” J Biomech, vol. 45, no. 3, pp. 474-83, Feb 02, 2012.
    [7]M. Maestro, and B. Ferre, “Anatomie fonctionnelle du pied et de la cheville de l’adulte,” Revue du Rhumatisme Monographies, vol. 81, no. 2, pp. 61-70, 2014.
    [8]A. Leardini, J. J. O’Connor, and S. Giannini, “Biomechanics of the natural, arthritic, and replaced human ankle joint,” J Foot Ankle Surg, vol. 7, no. 8, 2014.
    [9]B. Reggiani, A. Leardini, F. Corazza, and M. Taylor, “Finite element analysis of a total ankle replacement during the stance phase of gait,” J Biomech, vol. 39, no. 8, pp. 1435-43, 2006.
    [10]J. T. M. Cheung, G. de Vrles, and B. M. Nigg, “Biomechanical effects of midfoot fusion - a finite element Study,” J Biomech, vol. 40, pp. S326, 2007.
    [11]J. T. Cheung, and M. Zhang, “Parametric design of pressure-relieving foot orthosis using statistics-based finite element method,” Med Eng Phys, vol. 30, no. 3, pp. 269-77, Apr, 2008.
    [12]J. P. Halloran, M. Ackermann, A. Erdemir, and A. J. van den Bogert, “Concurrent musculoskeletal dynamics and finite element analysis predicts altered gait patterns to reduce foot tissue loading,” J Biomech, vol. 43, no. 14, pp. 2810-5, Oct 19, 2010.
    [13]T. Ingrassia, L. Nalbone, V. Nigrelli, D. Tumino, and V. Ricotta, “Finite element analysis of two total knee joint prostheses,” International Journal on Interactive Design and Manufacturing (IJIDeM), vol. 7, no. 2, pp. 91-101, 2012.
    [14]L. Zach, S. Konvickova, and P. Ruzicka, “Finite element analysis of the lower extrtemity - hinge knee behavior under dynamic load,” 2013.
    [15]Mustafa Ozen , Onur Sayman , and Hasan Havitcloglu “Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex,” Acta Bioeng Biomech, vol. 15, no. 3, 2013.
    [16]B. Jay Elliot, D. Gundapaneni, and T. Goswami, “Finite element analysis of stress and wear characterization in total ankle replacements,” J Mech Behav Biomed Mater, vol. 34, pp. 134-45, Jun, 2014.
    [17]J. Guo, L. Wang, Z. Mo, W. Chen, and Y. Fan, “Biomechanical behavior of valgus foot in children with cerebral palsy: A comparative study,” J Biomech, vol. 48, no. 12, pp. 3170-7, Sep 18, 2015.
    [18]H. Vo, B. Tuvel, B. Nguyen, and T. Le, “Determination of the neutral axis in total ankle replacement,” Ifmbe Proc, vol. 46, pp. 121-124, 2015.
    [19]D. Wai-Chi Wong, Y. Wang, M. Zhang, and A. Kam-Lun Leung, “Functional restoration and risk of non-union of the first metatarsocuneiform arthrodesis for hallux valgus: A finite element approach,” J Biomech, vol. 48, no. 12, pp. 3142-8, Sep 18, 2015.
    [20]Y. Wang, Z. Li, D. W. Wong, and M. Zhang, “Effects of ankle arthrodesis on biomechanical performance of the entire foot,” PLoS One, vol. 10, no. 7, pp. e0134340, 2015.
    [21]C. S. Yuan, W. Chen, C. Chen, G. H. Yang, C. Hu, and K. L. Tang, “Effects on subtalar joint stress distribution after cannulated screw insertion at different positions and directions,” J Foot Ankle Surg, vol. 54, no. 5, pp. 920-6, Sep-Oct, 2015.
    [22]R. T. Anderson, D. J. Pacaccio, C. M. Yakacki, and R. D. Carpenter, “Finite element analysis of a pseudoelastic compression-generating intramedullary ankle arthrodesis nail,” J Mech Behav Biomed Mater, vol. 62, pp. 83-92, Sep, 2016.
    [23]J. Yu, D. W. Wong, H. Zhang, Z. P. Luo, and M. Zhang, “The influence of high-heeled shoes on strain and tension force of the anterior talofibular ligament and plantar fascia during balanced standing and walking,” Med Eng Phys, vol. 38, no. 10, pp. 1152-6, Oct, 2016.
    [24]Z. J. Zhu, Y. Zhu, J. F. Liu, Y. P. Wang, G. Chen, and X. Y. Xu, “Posterolateral ankle ligament injuries affect ankle stability: a finite element study,” BMC Musculoskelet Disord, vol. 17, pp. 96, Feb 24, 2016.
    [25]V. Filardi, and D. Milardi, “Experimental strain analysis on the entire bony leg compared with FE analysis,” J Orthop, vol. 14, no. 1, pp. 115-122, Mar, 2017.
    [26]F. Lintz, T. Barton, M. Millet, W. J. Harries, S. Hepple, and I. G. Winson, “Ground reaction force calcaneal offset: a new measurement of hindfoot alignment,” Foot Ankle Surg, vol. 18, no. 1, pp. 9-14, Mar, 2012.
    [27]A. P. Silva, D. D. Chagas, M. L. Cavaliere, S. Pinto, J. S. de Oliveira Barbosa, and L. A. Batista, “Kinematic analysis of subtalar eversion during gait in women with fibromyalgia,” Foot (Edinb), vol. 28, pp. 42-46, Aug, 2016.
    [28]G. M. Monaghan, W. H. Hsu, C. L. Lewis, E. Saltzman, J. Hamill, and K. G. Holt, “Forefoot angle at initial contact determines the amplitude of forefoot and rearfoot eversion during running,” Clin Biomech (Bristol, Avon), vol. 29, no. 8, pp. 936-42, Sep, 2014.
    [29]R. Wang, and E. M. Gutierrez-Farewik, “The effect of subtalar inversion/eversion on the dynamic function of the tibialis anterior, soleus, and gastrocnemius during the stance phase of gait,” Gait Posture, vol. 34, no. 1, pp. 29-35, May, 2011.
    [30]R. Kakkar, and M. S. Siddique, “Stresses in the ankle joint and total ankle replacement design,” Foot Ankle Surg, vol. 17, no. 2, pp. 58-63, Jun, 2011.
    [31]K. D. Button, F. Wei, and R. C. Haut, “Unlocking the talus by eversion limits medial ankle injury risk during external rotation,” J Biomech, vol. 48, no. 13, pp. 3724-7, Oct 15, 2015.
    [32]C. W. Imhauser, S. Siegler, J. K. Udupa, and J. R. Toy, “Subject-specific models of the hindfoot reveal a relationship between morphology and passive mechanical properties,” J Biomech, vol. 41, no. 6, pp. 1341-9, 2008.
    [33]L. Zach, L. Kuncicka, P. Ruzicka, and R. Kocich, “Design, analysis and verification of a knee joint oncological prosthesis finite element model,” Comput Biol Med, vol. 54, pp. 53-60, Nov, 2014.
    [34] G. Valente, L. Pitto, E. Schileo, S. Piroddi, A. Leardini, M. Manfrini, and F. Taddei, “Relationship between bone adaptation and in-vivo mechanical stimulus in biological reconstructions after bone tumor: A biomechanical modeling analysis,” Clin Biomech (Bristol, Avon), vol. 42, pp. 99-107, Feb, 2017.
    [35]P. K. Thain, G. T. Hughes, and A. C. Mitchell, “The effect of repetitive ankle perturbations on muscle reaction time and muscle activity,” J Electromyogr Kinesiol, vol. 30, pp. 184-90, Oct, 2016.

    QR CODE