簡易檢索 / 詳目顯示

研究生: 陳盈錡
Ying-Qi Chen
論文名稱: 開發甲基丙烯酸酐改質羧甲基纖維素水膠遞送皮質類固醇應用於角膜傷口癒合
Development of methacrylic anhydride-modified carboxymethylcellulose hydrogels to deliver corticosteroids for corneal wound healing
指導教授: 鄭詠馨
Yung-Hsin Cheng
口試委員: 楊銘乾
Ming-Chien Yang
蔡瑞瑩
Ruey-Yug Tsay
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 143
中文關鍵詞: 角膜鹼性灼傷羧甲基纖維素地塞米松甲基丙烯酸酐
外文關鍵詞: corneal alkali burn, carboxymethylcellulose, dexamethasone, methacrylic anhydride
相關次數: 點閱:185下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 角膜的鹼性灼傷佔嚴重眼科化學損傷的三分之二至四分之三。因為鹼性溶劑具有親脂性的關係,會迅速地滲透入眼部組織內,並滲入前房中,使眼部的細胞內引起皂化反應,持續地分泌蛋白水解酶,進而導致白內障的形成、睫狀體和小梁網損傷。嚴重的情況下,甚至可能會引起失明。目前臨床治療上,大多每 1–2 小時使用 0.1% 地塞米松 (Dexamethasone, DEX) 滴眼液進行給藥。DEX 是一種合成的皮質類固醇,廣泛用作眼科疾病的抗發炎藥。然而,此治療方式卻具有生物利用度低的問題,需要頻繁地進行給藥。羧甲基纖維素 (Carboxymethylcellulose, CMC) 是一種具有生物黏附性高黏度聚合物,可長期保留在角膜上,並且被 FDA 批准為非活性眼科潤滑劑成份。本研究製備一新型 DEX 接枝 CMC 水膠,除了期望改質後的水膠具有黏膜貼附的特性,以延長藥物停留於眼表的時間外,也期望藥物接枝後的水膠,能在鹼性和生理環境中達到藥物釋放,有效提升治療效果。本研究使用傅立葉轉換紅外線光譜、核磁共振光譜和分光光譜儀進行材料鑑定、場發射掃描式電子顯微鏡進行表面型態分析,並利用了流變儀探討流變性質,以及高效液相層析評估藥物的釋放率,另外評估材料體內及體外的生物相容性,除此之外,也以過氧化氫 (Hydrogen peroxide, H2O2) 建立角膜上皮細胞損傷模型,以評估材料對受損細胞的治療效果。


    Corneal alkali injuries account for two-thirds to three-fourths of severe ocular chemical injuries. Due to their lipophilic nature, alkaline solvents can quickly penetrate ocular tissues and enter the anterior chamber, causing saponification reactions within ocular cells. This leads to sustained secretion of proteolytic enzymes, resulting in the formation of cataracts and damage to the ciliary body and trabecular meshwork. In severe cases, it can even cause blindness. Topical administration of 0.1% dexamethasone (DEX) is the first-line treatment for corneal alkali burns. DEX with antiinflammatory properties can suppress the inflammatory angiogenesis in cornea and even better than anti-vascular endothelial growth factor. However, low ocular bioavailability and high dosage frequency (every 1 to 2 hours for mild or severe chemical burns) may decrease the patient’s compliance. Carboxymethylcellulose (CMC) is a linear watersoluble polysaccharide and is a common composition of artificial tears. In the study, a novel DEX-grafted CMC hydrogel was developed to improve the mucoadhesive properties and prolong drug residence time on the ocular surface in alkaline and physiological environments, thereby enhancing therapeutic efficacy. The material characterization was performed using Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, spectrophotometer, field emission scanning electron microscopy and rheometer. In-vitro drug release study was evaluated using high performance liquid chromatography. In-vitro and in-vivo biocompatibility of developed hydrogels were demonstrated. The effects of developed hydrogels in corneal epithelial cells exposed to H2O2 were investigated.

    中文摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 viii 表目錄 xii 第 一 章 緒論 1 一、 研究背景 1 二、 研究動機與目的 1 第 二 章 理論基礎 2 一、 眼睛的構造 2 二、 眼部化學灼傷 3 (一) 鹼性化學灼傷 3 (二) 酸性化學損傷 4 三、 鹼性化學灼傷之致病成因 4 四、 鹼性化學灼傷之眼內pH值變化 5 五、 眼部化學灼傷之發炎階段 6 (一) 即刻期 (Immediate phase) 7 (二) 急性期 (Acute phase) 7 (三) 早期修復期 (Early reparative phase) 9 (四) 晚期修復期 (Late reparative phase) 9 六、 眼部化學灼傷之分類 9 七、 眼部化學灼傷的處理策略 11 (一) 前期管理 11 (二) 促進上皮化 12 (三) 控制發炎反應 12 (四) 手術管理 14 (五) 預防併發症 17 八、 眼部化學灼傷不同階段的治療方法 17 九、 羧甲基纖維素鈉 19 十、 甲基丙烯酸酯化高分子 21 十一、 地塞米松 23 第 三 章 實驗材料與方法 26 一、 實驗藥品 26 二、 實驗儀器 29 三、 實驗流程圖 31 四、 CMCMA的合成 32 五、 CMCMA-ADH的合成 34 六、 Suc-DEX的合成 36 七、 NHS-Suc-DEX的合成 37 八、 CMCMA-ADH-Suc-DEX的合成 38 九、 傅里葉轉換紅外線光譜測定 40 十、 核磁共振分析 40 十一、 表面型態的鑑定 41 十二、 流變性質的測試 41 十三、 生物黏附度的檢測 42 十四、 吸光值的檢測 42 十五、 體外藥物釋放的研究 43 十六、 角膜上皮細胞培養 45 十七、 藥物安全濃度測試 47 十八、 體外生物相容性 48 十九、 細胞遷移率 48 二十、 細胞損傷模型建立 49 二十一、 RNA萃取和基因表現 50 二十二、 細胞凋亡率 52 二十三、 細胞存活率 53 二十四、 體內生物相容性 53 二十五、 統計分析方法 54 第 四 章 結果與討論 55 一、 CMCMA的合成 55 (一) 傅里葉轉換紅外線光譜測定 55 (二) 核磁共振分析 56 (三) 表面型態的鑑定 58 (四) 黏度變化的檢測 59 (五) 流變性質的測試 61 (六) 生物黏附度的檢測 68 二、 CMCMA-ADH的合成 70 (一) 傅里葉轉換紅外線光譜測定 70 (二) 核磁共振分析 71 (三) 表面型態的鑑定 72 三、 Suc-DEX和NHS-Suc-DEX的合成 73 (一) 核磁共振分析 73 四、 CMCMA6-ADH-Suc-DEX的合成 77 (一) 傅里葉轉換紅外線光譜測定 77 (二) 核磁共振分析 78 (三) 吸光值的檢測 80 (四) 表面型態的鑑定 81 (五) 黏度變化的檢測 82 (六) 流變性質的檢測 83 (七) 體外藥物釋放的研究 85 (八) 藥物安全濃度 106 (九) 體外生物相容性 107 (十) 細胞遷移率 108 (十一) 細胞損傷模型建立 109 (十二) RNA萃取和基因表現 111 (十三) 細胞凋亡率 115 (十四) 細胞存活率 117 (十五) 體內生物相容性 119 第 五 章 結論 120 第 六 章 參考文獻 122

    [1] N. Sharma, M. Kaur, T. Agarwal, V.S. Sangwan, R.B. Vajpayee, Treatment of acute ocular chemical burns, Survey of ophthalmology 63(2) (2018) 214-235.
    [2] M. Bizrah, A. Yusuf, S. Ahmad, Adherence to treatment and follow-up in patients with severe chemical eye burns, Ophthalmology and therapy 8 (2019) 251-259.
    [3] G.L. Griffith, B. Wirostko, H.-K. Lee, L.E. Cornell, J.S. McDaniel, D.O. Zamora, A.J. Johnson, Treatment of corneal chemical alkali burns with a crosslinked thiolated hyaluronic acid film, Burns 44(5) (2018) 1179-1186.
    [4] B.D. Kels, A. Grzybowski, J.M. Grant-Kels, Human ocular anatomy, Clinics in dermatology 33(2) (2015) 140-146.
    [5] A.T. Comez, M. Ozbas, Evaluation and Management of Ocular Traumas, (2022).
    [6] H.S. Dua, D.S.J. Ting, A. Al Saadi, D.G. Said, Chemical eye injury: pathophysiology, assessment and management, Eye 34(11) (2020) 2001-2019.
    [7] M.D. Wagoner, Chemical injuries of the eye: current concepts in pathophysiology and therapy, Survey of ophthalmology 41(4) (1997) 275-313.
    [8] M. Soleimani, M. Naderan, Management strategies of ocular chemical burns: current perspectives, Clinical Ophthalmology (2020) 2687-2699.
    [9] P. Singh, M. Tyagi, Y. Kumar, K. Gupta, P. Sharma, Ocular chemical injuries and their management, Oman journal of ophthalmology 6(2) (2013) 83.
    [10] M. Bizrah, A. Yusuf, S. Ahmad, An update on chemical eye burns, Eye 33(9) (2019) 1362-1377.
    [11] M. Eslani, A. Baradaran-Rafii, A. Movahedan, A.R. Djalilian, The ocular surface chemical burns, Journal of ophthalmology 2014 (2014).
    [12] E.I. Paschalis, C. Zhou, F. Lei, N. Scott, V. Kapoulea, M.-C. Robert, D. Vavvas, R. Dana, J. Chodosh, C.H. Dohlman, Mechanisms of retinal damage after ocular alkali burns, The American journal of pathology 187(6) (2017) 1327-1342.
    [13] G. Melilli, I. Carmagnola, C. Tonda-Turo, F. Pirri, G. Ciardelli, M. Sangermano, M. Hakkarainen, A. Chiappone, DLP 3D printing meets lignocellulosic biopolymers: Carboxymethyl cellulose inks for 3D biocompatible hydrogels, Polymers 12(8) (2020) 1655.
    [14] N.V. Dubashynskaya, Y.A. Skorik, Patches as Polymeric Systems for Improved Delivery of Topical Corticosteroids: Advances and Future Perspectives, International Journal of Molecular Sciences 23(21) (2022) 12980.
    [15] R.M. Rajendraprasad, G. Kwatra, N. Batra, Carboxymethyl cellulose versus hydroxypropyl methylcellulose tear substitutes for dry eye due to computer vision syndrome: Comparison of efficacy and safety, International Journal of Applied and Basic Medical Research 11(1) (2021) 4.
    [16] S. Asati, S. Jain, A. Choubey, Bioadhesive or mucoadhesive drug delivery system: a potential alternative to conventional therapy, Journal of Drug Delivery and Therapeutics 9(4-A) (2019) 858-867.
    [17] A. Zennifer, P. Senthilvelan, S. Sethuraman, D. Sundaramurthi, Key advances of carboxymethyl cellulose in tissue engineering & 3D bioprinting applications, Carbohydrate Polymers 256 (2021) 117561.
    [18] V.L. Perez, B. Wirostko, M. Korenfeld, S. From, M. Raizman, Ophthalmic drug delivery using iontophoresis: recent clinical applications, Journal of Ocular Pharmacology and Therapeutics 36(2) (2020) 75-87.
    [19] D. Aldrich, C.M. Bach, W. Brown, W. Chambers, J. Fleitman, D. Hunt, M. Marques, Y. Mille, A. Mitra, S. Platzer, Ophthalmic preparations, US Pharmacopeia 39(5) (2013) 1-21.
    [20] O.M. Kolawole, W.M. Lau, V.V. Khutoryanskiy, Methacrylated chitosan as a polymer with enhanced mucoadhesive properties for transmucosal drug delivery, International Journal of Pharmaceutics 550(1-2) (2018) 123-129.
    [21] S.R. Krishn, K. Ganguly, S. Kaur, S.K. Batra, Ramifications of secreted mucin MUC5AC in malignant journey: a holistic view, Carcinogenesis 39(5) (2018) 633-651.
    [22] R.S. Malkar, A.L. Jadhav, G.D. Yadav, Innovative catalysis in Michael addition reactions for CX bond formation, Molecular Catalysis 485 (2020) 110814.
    [23] N.V. Dubashynskaya, A.N. Bokatyi, A.S. Golovkin, I.V. Kudryavtsev, M.K. Serebryakova, A.S. Trulioff, Y.A. Dubrovskii, Y.A. Skorik, Synthesis and characterization of novel succinyl chitosan-dexamethasone conjugates for potential intravitreal dexamethasone delivery, International Journal of Molecular Sciences 22(20) (2021) 10960.
    [24] N.V. Dubashynskaya, A.N. Bokatyi, Y.A. Skorik, Dexamethasone conjugates: Synthetic approaches and medical prospects, Biomedicines 9(4) (2021) 341.
    [25] M. Everts, R.J. Kok, S.A. Asgeirsdóttir, B.N. Melgert, T.J. Moolenaar, G.A. Koning, M.J. van Luyn, D.K. Meijer, G. Molema, Selective intracellular delivery of dexamethasone into activated endothelial cells using an E-selectin-directed immunoconjugate, The Journal of Immunology 168(2) (2002) 883-889.
    [26] D.M. Varma, G.T. Gold, P.J. Taub, S.B. Nicoll, Injectable carboxymethylcellulose hydrogels for soft tissue filler applications, Acta Biomaterialia 10(12) (2014) 4996-5004.
    [27] X. Jia, G. Colombo, R. Padera, R. Langer, D.S. Kohane, Prolongation of sciatic nerve blockade by in situ cross-linked hyaluronic acid, Biomaterials 25(19) (2004) 4797-4804.
    [28] T. Ito, I.P. Fraser, Y. Yeo, C.B. Highley, E. Bellas, D.S. Kohane, Anti-inflammatory function of an in situ cross-linkable conjugate hydrogel of hyaluronic acid and dexamethasone, Biomaterials 28(10) (2007) 1778-1786.
    [29] J. Sun, C. Xiao, H. Tan, X. Hu, Covalently crosslinked hyaluronic acid‐chitosan hydrogel containing dexamethasone as an injectable scaffold for soft tissue engineering, Journal of applied polymer science 129(2) (2013) 682-688.
    [30] M. Dewan, B. Bhowmick, G. Sarkar, D. Rana, M.K. Bain, M. Bhowmik, D. Chattopadhyay, Effect of methyl cellulose on gelation behavior and drug release from poloxamer based ophthalmic formulations, International journal of biological macromolecules 72 (2015) 706-710.
    [31] E.E. Hassan, J.M. Gallo, A simple rheological method for the in vitro assessment of mucin-polymer bioadhesive bond strength, Pharmaceutical research 7 (1990) 491-495.
    [32] K. Wang, L. Jiang, Y. Zhong, Y. Zhang, Q. Yin, S. Li, X. Zhang, H. Han, K. Yao, Ferrostatin‐1‐loaded liposome for treatment of corneal alkali burn via targeting ferroptosis, Bioengineering & Translational Medicine 7(2) (2022) e10276.
    [33] Y. Zhang, M. Huo, J. Zhou, A. Zou, W. Li, C. Yao, S. Xie, DDSolver: an add-in program for modeling and comparison of drug dissolution profiles, The AAPS journal 12 (2010) 263-271.
    [34] M. Vigata, C. Meinert, D.W. Hutmacher, N. Bock, Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques, Pharmaceutics 12(12) (2020) 1188.
    [35] Q. Li, X. Wu, M. Xin, Strengthened rebamipide ocular nanoformulation to effectively treat corneal alkali burns in mice through the HMGB1 signaling pathway, Experimental Eye Research 213 (2021) 108824.
    [36] M. Yáñez-S, B. Matsuhiro, S. Maldonado, R. González, J. Luengo, O. Uyarte, D. Serafine, S. Moya, J. Romero, R. Torres, Carboxymethylcellulose from bleached organosolv fibers of Eucalyptus nitens: synthesis and physicochemical characterization, Cellulose 25 (2018) 2901-2914.
    [37] R. Salzillo, C. Schiraldi, L. Corsuto, A. D’Agostino, R. Filosa, M. De Rosa, A. La Gatta, Optimization of hyaluronan-based eye drop formulations, Carbohydrate polymers 153 (2016) 275-283.
    [38] R. Kol, T. De Somer, D.R. D'hooge, F. Knappich, K. Ragaert, D.S. Achilias, S. De Meester, State‐Of‐The‐Art Quantification of Polymer Solution Viscosity for Plastic Waste Recycling, ChemSusChem 14(19) (2021) 4071-4102.
    [39] M. Lee, Y. Li, Y. Feng, C. Carter, Study of frequency dependence modulus of bulk amorphous alloys around the glass transition by dynamic mechanical analysis, Intermetallics 10(11-12) (2002) 1061-1064.
    [40] L.-F. Hu, D.-J. Chen, J.-L. Yang, X.-H. Zhang, An investigation of the organoborane/Lewis base pairs on the copolymerization of propylene oxide with succinic anhydride, Molecules 25(2) (2020) 253.
    [41] Y.-H. Wen, T.-Y. Lee, P.-C. Fu, C.-L. Lo, Y.-T. Chiang, Multifunctional polymer nanoparticles for dual drug release and cancer cell targeting, Polymers 9(6) (2017) 213.
    [42] N. Zashikhina, S. Gladnev, V. Sharoyko, V. Korzhikov-Vlakh, E. Korzhikova-Vlakh, T. Tennikova, Synthesis and characterization of nanoparticle-based dexamethasone-polypeptide conjugates as potential intravitreal delivery systems, International Journal of Molecular Sciences 24(4) (2023) 3702.
    [43] P.S. Chan, Q. Li, B. Zhang, K.K. To, S.S. Leung, In vivo biocompatibility and efficacy of dexamethasone-loaded PLGA-PEG-PLGA thermogel in an alkali-burn induced corneal neovascularization disease model, European Journal of Pharmaceutics and Biopharmaceutics 155 (2020) 190-198.
    [44] R. Zhang, Y. Tao, W. Xu, S. Xiao, S. Du, Y. Zhou, A. Hasan, Rheological and controlled release properties of hydrogels based on mushroom hyperbranched polysaccharide and xanthan gum, International journal of biological macromolecules 120 (2018) 2399-2409.
    [45] Y. Wei, T. Fan, M. Yu, Inhibitor of apoptosis proteins and apoptosis, Acta biochimica et biophysica Sinica 40(4) (2008) 278-288.
    [46] P. Kralik, M. Ricchi, A basic guide to real time PCR in microbial diagnostics: definitions, parameters, and everything, Frontiers in microbiology 8 (2017) 108.

    無法下載圖示 全文公開日期 2033/08/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE