簡易檢索 / 詳目顯示

研究生: 周士閎
Shih-hung Chou
論文名稱: 改良式錯誤擴散區塊截斷編碼技術與快速查詢隱密性角度策略之半色調浮水印技術
Improved Block Truncation Coding Using Optimized Error Diffusion and Speed-Oriented Halftone Watermarking Using Implicit Angle Lookup Strategy
指導教授: 郭景明
Jing-ming Guo
口試委員: 丁建均
Jian-jiun Ding
謝君偉
Jun-wei Hsieh
王乃堅
Nai-jian Wang
徐繼聖
Gee-sern Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 170
中文關鍵詞: 數位半色調技術區塊截斷編碼技術直接二元搜尋法影像壓縮錯誤擴散區塊截斷編碼技術最小均方演算法基因演算法天真貝氏分類器
外文關鍵詞: Digital halftoning, block truncation coding, direct binary search, image compression, error diffusion block truncation coding, least mean square, genetic algorithm, naive Bayes classifier
相關次數: 點閱:315下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要提出改良式錯誤擴散區塊截斷編碼技術與使用快速查詢隱密性角度策略之半色調技術兩種方法,其內容大致如下:
    第一個方法為改良式錯誤擴散區塊截斷編碼技術:首先,由於在錯誤擴散區塊截斷編碼技術當中,使用區塊內的最大值與最小值兩種數值當作量化色階,會造成脈衝雜訊的問題。因此本論文提出自適應性量化色階的方法,其主要是加入可調式參數來調整量化色階,並且統計不同區塊當中的最佳參數,即可解決脈衝雜訊的問題。除此之外,由於在錯誤擴散區塊截斷編碼技術當中的錯誤擴散權重,主要是針對半色調影像而提出,並非區塊截斷編碼影像。因此本論文提出以基因演算法,將錯誤擴散權重針對區塊截斷編碼影像重新進行最佳化。由實驗結果可以得知,在相同壓縮率的情況下,本論文所提出的方法相較於其他不同的區塊截斷編碼技術有最佳的影像品質。
    第二個方法為使用快速查詢隱密性角度策略之半色調技術,該方法主要是植基於一個低計算複雜度的半色調浮水印技術。在編碼端,為了確保輸出影像為半色調影像,因此利用直接二元搜尋法結合不同紋理角度資訊來建立壓縮表。隨後,利用查詢壓縮表的方式將浮水印嵌入其中。在解碼端當中,利用最小均方演算法來增加不同維度之嵌入角度紋理特徵之間的差異性。最後,利用天真貝氏分類器將不同的角度資訊以機率的方式進行分類。由實驗結果可以得知,在影像大小為512x512的情況下,本論文所提出的方法相較於其他不同的半色調浮水印技術,除了有較佳影像品質與解碼率外,還有最快的處理效率0.6毫秒。因此本論文所提出的方法將能進一步解決半色調影像之安全性問題並提升印刷市場的商業競爭力。


    In this thesis, two contributions are delivered, including improved block truncation coding using optimized error diffusion and speed-oriented halftone watermarking using implicit angle lookup strategy.
    The first proposed method is an improved halftoning-based Block Truncation Coding (BTC) using optimized error diffusion. First, the error-diffused block truncation coding (EDBTC) scheme adopts the two extreme values, maximum and minimum, within a block to form the quantization levels. Yet, this induces the unpleasant visual impulse noises. Thus, an adaptive quantization levels selection strategy is proposed to ease this problem, where the adjustable parameters are added to further modify the quantization levels, and the optimized parameters for different blocks are investigated. In addition, the error kernel used in the EDBTC is, in fact, for the typical halftoning, rather than BTC-based. Consequently, the optimization on error kernel for BTC-based scheme is proposed, in which the Genetic Algorithm (GA) is adopted. Experimental results demonstrate that the proposed method can achieve the highest image quality with the same compression ratio former BTC methods.
    The second proposed method is a speed-oriented halftone watermarking using implicit angle lookup strategy. Herein, the computational complexity can be significantly reduced. In encoder, the Direct Binary Search (DBS) is employed to generate the reference table to ensure the output is in halftone format. Subsequently, a number of optimized compressive tables with various texture angles are established for subsequent table lookup. In decoder, the Least-Mean-Square (LMS) enlarges the differences among those phenotypes of the embedded angles and the required number of dimensions for each angle. Finally, the naive Bayes classifier is employed to collect the probability information for classifying various angles. As documented in the experimental results, good image quality and correct detect rate can be obtained simultaneously. Moreover, a high processing efficiency of 0.6 milliseconds for an image of size 512x512 can also be achieved, which can thus increase the commercial competitive strength in printing market, in particular the security issue is well addressed.

    中文摘要 Abstract 誌謝 目錄 圖表索引 第一章 緒論 1.1研究動機與目的 1.2論文架構 第二章 數位半色調技術文獻探討 2.1區塊取代法 (Block Replacement, BR) 2.2限制平均法 (Constrained Average, CA) 2.3有序抖動法 (Ordered Dithering, OD) 2.4錯誤擴散法 (Error Diffusion, ED) 2.5點擴散法 (Dot Diffusion, DD) 2.6 直接二元搜尋法 (Direct Binary Search, DBS) 第三章 區塊截斷編碼技術文獻探討 3.1 區塊截斷編碼 (Block Truncation Coding, BTC) 3.2 有序抖動區塊截斷編碼 (Ordered Dithering BTC, ODBTC) 3.3 錯誤擴散區塊截斷編碼 (Error Diffusion BTC, EDBTC) 3.4 點擴散區塊截斷編碼 (Dot Diffusion BTC, DDBTC) 第四章 數位浮水印技術文獻探討 4.1 人眼視覺之峰值訊噪比 (Human Visual System PSNR, HPSNR) 4.2 正確解碼率 (Correct Decode Rate, CDR) 4.3 浮水印技術相關文獻 (Related reference of watermarking) 第五章 學習與最佳化演算法 5.1 最小均方演算法 (Least Mean Square, LMS) 5.2 基因演算法 (Genetic Algorithm, GA) 第六章 改良式錯誤擴散區塊截斷編碼技術 6.1 自適應性量化色階 (Adaptive quantization level) 6.2 錯誤擴散權重最佳化 (Optimization for error kernel) 6.3 實驗結果 (Experiment Results) 6.4 小結 (Summary) 第七章 使用快速查詢隱密性角度策略之半色調浮水印技術 7.1 浮水印編碼端 (Encoding) 7.2 浮水印解碼端 (Decoding) 7.3 實驗結果 (Experimental Results) 7.4 小結 (Summary) 第八章 結論與未來展望 參考文獻

    [1]P. Hamill, “Line printer modification for better grey level pictures,” Computer Graphics and Image Proc., vol. 6, pp. 485-491, 1977.
    [2]K. Knowlton and L. Harmon, “Computer-produced greyscales,” Computer Graphics and Image Proc., vol. 1, pp.1-20, 1972.
    [3]B. Perry and M. L. Mendelsohn, “Picture generation with a standard line printer,” Comm. of the ACM, 7(5), pp. 311-313, 1964.
    [4]J. Jarvis and C. Roberts, “A new technique for displaying continuous tone images on a bilevel display,” IEEE Trans. Communication, 24(8), pp. 891-898, Aug. 1976.
    [5]R. Ulichney, Digital halftoning, Cambridge, MA: MIT Press, 1987.
    [6]R. W. Floyd and L. Steinberg, “An adaptive algorithm for spatial gray scale,” in proc. SID 75 Digest. Society for information Display, pp. 36-37, 1975.
    [7]J. F. Jarvis, C. N. Judice, and W. H. Ninke, “A survey of techniques for the display of continuous-tone pictures on bilevel displays,” Comp. Graph. Image Proc., 5(1), pp. 13-40, 1976.
    [8]P. Stucki, “MECCA-A multiple-error correcting computation algorithm for bilevel image hardcopy reproduction,” Res. Rep. RZ1060, IBM Res. Lab., Zurich, Switzerland, 1981.
    [9]J. N. Shiau and Z. Fan, “A set of easily implementable coefficients in error diffusion with reduced worm artifacts,” SPIE, 2658: 222-225, 1996.
    [10]P. Li and J. P. Allebach, “Block interlaced pinwheel error diffusion,” JEI, 14(2), Apr-Jun. 2005.
    [11]V. Ostromoukhov, “A simple and efficient error diffusion algorithm,” Computer Graphics (Proceedings of SIGGRAPH 2001), pp. 567-572, 2001.
    [12]D. E. Knuth, “Digital halftones by dot diffusion,” ACM Trans. Graph., 6(4), Oct. 1987.
    [13]M. Mese and P. P. Vaidyanathan, “Optimized halftoning using dot diffusion and methods for inverse halftoning,” IEEE Trans. Image Processing, 9(4), pp. 691-709, Apr. 2000.
    [14]J. M. Guo and Y. F. Liu, “Improved dot diffusion by diffused matrix and class matrix co-optimization,” IEEE Trans. Image Processing, 18(8), pp. 1804-1816, August 2009.
    [15]M. Analoui and J. P. Allebach, “Model based halftoning using direct binary search,” Proc. SPIE, vol. 1666, pp. 96-108, 1992.
    [16]J. P. Allebach, “FM screen design using DBS algorithm,” in Proc. ICIP, vol. 1, Lausanne, Switzerland, pp. 549-552, 1996.
    [17]M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt., 26(14), pp. 2788-2798, July 1987.
    [18]D. J. Lieberman and J. P. Allebach, “Efficient model based halftoning using direct binary search,” IEEE ICIP, pp. 775-778, 1997.
    [19]D. J. Lieberman and J. P. Allebach, “A dual interpretation for direct binary search and its implications for tone reproduction and texture quality,” IEEE Trans. Image Processing, 9(11), pp. 1950-1963, 2000.
    [20]S. H. Kim and J. P. Allebach, “Impact of HVS models on model-based halftoning,” IEEE Trans. Image Processing, 11(3), pp. 258-269, 2002.
    [21]E. J. Delp and O. R. Mitchell, “Image Compression using block truncation coding,” IEEE Trans. Commun. Vol. COMM-27, pp. 1335-1342, Sept., 1979.
    [22]J. M. Guo and M. F. Wu, “Improved block truncation coding based on the void-and-cluster dithering approach,” IEEE Trans. Image Processing, vol. 18, no. 1, pp. 211-213, Jan. 2009.
    [23]J. M. Guo “Improved block truncation coding using modified error diffusion,” Electronics Letters, vol. 44, no. 7, pp. 462-464, Mar. 2008.
    [24]J. M. Guo and Y. F. Liu “Improved Block Truncation Coding using Optimized Dot Diffusion,” IEEE International Symposium on Circuits and Systems, pp. 2634-2637, May 30-June 2, 2010.
    [25]N. Memon and P. W. Wong, “Protecting Digital Media Content,” Commum. of the ACM, vol. 41, pp. 35-43, July 1998.
    [26]J. M. Guo and Y. F. Liu, “Joint Compression Watermarking Scheme Using Majority-Parity Guidance and Halftoning-Based Block Truncation Coding,” IEEE Trans. Image Processing, vol. 19, no. 8, Aug 2010.
    [27]J. M. Guo, C. C. Su, Y. F. Liu, H. Lee, and J. D. Lee, “Oriented modulation for watermarking in direct binary search halftone images,” IEEE Trans. Image Processing, vol. 21, no. 9, Sep 2012.
    [28]J. R. Goldschneider, E. A. Riskin, and P. W. Wong, “Embedded color error diffusion,” in Proc. IEEE int. Conf. Image processing, vol. 1, pp.565-568, 1996.
    [29]G. Sharma and S. G. Wang, “Show-through watermarking of duplex printed documents,” SPIE International Conference on Security, Steganography, and Watermarking of Multimedia Contents VI, vol. 5306, San Jose, pp. 19-22, Jan. 2004.
    [30]Z. Baharav and D. Shaked, “Watermarking of dither halftoned images,” IS&T/SPIE International Conference on Security and Watermarking of Multimedia Content 3657, pp. 307-316, May 1999.
    [31]M. S. Fu and O. C. Au, “Hiding data in halftone image using modified data hiding error diffusion,” Proc. SPIE Conf. Visual Communication and Image Processing, vol. 4067, pp. 1671-1680, May 2000.
    [32]D. Kacker and J. P. Allebach, “Joint halftoning and watermarking,” IEEE Trans. Signal Processing, vol. 51, no. 4, pp. 1054-1068, April 2003.
    [33]J. M. Guo, “A new model-based digital halftoning and data hiding designed with LMS optimization,” IEEE Trans. on Multimedia, vol. 9, no. 4, pp. 687-700, June 2007.
    [34]K. T. Knox, “Digital watermarking using stochastic screen patterns,” U.S. Patent 5734752.
    [35]M. S. Fu and O. C. Au, “Data hiding in halftone images by stochastic error diffusion,” IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1965-1968, May 2000.
    [36]B. Widrow and M. E. Hoff, “Adaptive switch circuits,” IRE Western Electric Shhow and Convention Recode, part 4, pp. 96-104, 1960.
    [37]P. C. Chang, C. S. Yu and T. H. Lee, “Hybrid LMS-MMSE inverse halftoning technique,” IEEE Trans. On Image Processing, vol. 10, no. 1, pp. 95-103, Jan. 2001.
    [38]S. Kirkpatrick et al., “Optimization by simulated annealing,” Science 220, pp. 671-680, 1983.
    [39]J. H. Holland, Adaptation in Natural and Artificial Systems. University of Michigan Press: Ann Arbor, MI, 1975.
    [40]M. Mitchell, An introduction to genetic algorithm, Cambridge, MA: MIT Press, 1996.
    [41]J. M. Guo* and C. Y. Lin, “Parallel and element-reduced error-diffused block truncation coding,” IEEE Trans. on Communications, vol. 58, no. 5, May 2010.
    [42]Image Database : http://msp.ee.ntust.edu.tw/public%20file/SHChou/Database.rar
    [43]J. Sullivan, L. Ray, and R. Miller, “Design of minimum visual modulation halftone patterns,” IEEE Trans. on Systems, Man, and Cybernetics, vol. 21, no. 1, Jan/Feb 1991.
    [44]Y. F. Liu, J. M. Guo, and J. D. Lee, “Halftone image classification using LMS algorithm and Naive Bayes,” IEEE Trans. Image Processing, vol. 20, no. 10, Oct 2011.
    [45]S. C. Pei, J. M. Guo, and H. Lee, “Novel robust watermarking technique in dithering halftone images,” IEEE Signal Processing Letters, vol. 12, no. 4, pp. 333-336, April 2005.
    [46]J. M. Guo and Y. F. Liu, “Hiding multitone watermarks in halftone images,” IEEE Multimedia, vol. 17, pp. 34-43, January 2010.

    QR CODE