簡易檢索 / 詳目顯示

研究生: 吳靖賢
Ching-Hsien Wu
論文名稱: 影響混凝土中鋼筋腐蝕量測之因子探討
Study on the Influencing Factors of Reinforcement Corrosion Measurements in Concrete
指導教授: 陳君弢
Chun-tao Chen
口試委員: 張大鵬
Ta-peng Chang
沈得縣
De-hsien Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 199
中文關鍵詞: 混凝土鋼筋腐蝕量測技術
外文關鍵詞: concrete, reinforcement corrosion, measurement technique
相關次數: 點閱:178下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討影響鋼筋腐蝕量測的因子、量測值可靠度分析及提升量測值準確度之方式,亦期望結果在現地量測上能方便使用,有助於未來相關量測規範之制訂,與新建/既有建築物的生命週期評估。試驗過程中,試體靜置於3.5 %鹽水中並通電加速腐蝕,於每日利用脈衝量測法、直流極化法與交流阻抗法量測腐蝕電流密度,進而計算鋼筋腐蝕速率與腐蝕量,再據此比較重量損失法所得的腐蝕量。
研究結果顯示,水灰比為0.4、0.5、0.6時及保護層厚度為3及6 cm時,計算腐蝕量與實際重量損失約成正比關係,分別可用25、50、250或是1000倍保守且有效的評估實際鏽蝕量。此外,當試體為混凝土時,可僅用5倍估算。然而,當含水率改變5 %時,量測值降低20 %。有箍筋交疊處量測值不穩定,實際以箍筋的腐蝕較主筋嚴重。使用脈衝電流100 μA與脈衝時間10 s可適當極化鋼筋。而過電位±10 mV、間隔30 s可獲得穩定量測值。另一方面,當試體具表面貼覆時,脈衝量測法無法進行有效量測,因此實務量測應先移除批覆並考慮靠材料性質,方能適當進行量測及推估腐蝕量。


This study explores the influencing factors, reliability, and methods to increase the accuracy in reinforment corrosion measurements. The results are expected to be applicable onsite, thereby contributing to draft for a new standard and evaluate the lifecycles in existing or new buildings. During the tests, the specimens were immersed in 3.5% salt water and charged for accelerated coccorion. The corrosion currents were measured daily using galvanostatic technique, linear polarization and impendences. The corrosion rates and the amount of corrosion were then estimated and used to be compared with the weight loss. Results showed that the calculated weight loss is linearly proportional to the weight loss in mortar specimens with w/c of 0.4, 0.5, and 0.6, and cover thickness of 3 cm or 6 cm. The weight loss can be estimated by multiplying the calculated weight losses by 25, 50, 250, or 1000, respectively. In concrete specimens, such multiplying factor is only 5. In addition, the measuring values of the corrosion currents were reduced by 20% as the moisture content of the specimens were reduced by 5%. The measurements at the location where the dow bars overlapped were unstable and the dow bars had more severe corrosion than the main bars. Adequate polarization can be archieved by using impulse current of 100 μA and impulse time of 10 s, and stable measurements were obtained by using an overpotential of ±10 mV and duration of 30 s. On the other hand, the measurements were not taken in specimens with tiles ontop. Therefore, in future applications, the tiles must be removed and the cover properties must be considered prior to the corrosion measurements.

摘要 Abstract 誌謝 總目錄 表目錄 圖目錄 第一章 緒論 1.1 研究動機 1.2 研究目的 1.3 研究方法及流程 第二章 文獻回顧 2.1 腐蝕機理 2.1.1 腐蝕的定義 2.1.2 腐蝕的型態 2.1.3 電化學腐蝕 2.1.4 混凝土中鋼筋腐蝕劣化原理 2.2 氯離子對鋼筋腐蝕的影響 2.2.1 氯離子來源 2.2.2 氯離子型態 2.2.3 混凝土中氯離子的傳輸 2.2.4 氯離子量測法 2.2.5 氯離子所造成之鋼筋混凝土結構物腐蝕劣化 2.3 鋼筋腐蝕量測法 2.3.1 開路電位法 2.3.2 直流極化法 2.3.3 交流阻抗法 2.3.4 脈衝電流法 2.3.5 鋼筋重量損失計算 2.3.6 現地腐蝕量測研究及應用 第三章 試驗規劃 3.1 試驗變數 3.1.1 小尺寸試體 3.1.2 全尺寸試體 3.2 試驗配比 3.2.1 小尺寸試體 3.2.2 全尺寸試體 3.3 試體設計與製作 3.3.1 小尺寸試體設計 3.3.2 全尺寸試體設計 3.3.3 試體製作 3.4 試驗材料 3.5 試體設備 3.5.1 腐蝕量測儀器 3.5.2 氯離子量測儀器 3.5.3 微觀結構分析儀器 3.5.4 其他試驗儀器 3.6 試驗方法 3.6.1 鋼筋加速腐蝕 3.6.2 鋼筋腐蝕量測 3.6.3 氯離子濃度量測 3.6.4 混凝土水分量測 3.6.5 微觀結構分析 第四章 試驗結果與分析 4.1 前言 4.2 小尺寸試體試驗 4.2.1 先期試驗 4.2.2 保護層厚度 4.2.3 水灰比 4.2.4 粗細粒料體積比 4.2.5 含水率 4.2.6 鋼筋配置 4.2.7 脈衝電流與施加時間的影響 4.2.8 過電壓大小的影響 4.2.9 頻率振幅大小的影響 4.2.10 氯離子分佈與鋼筋腐蝕量間的關係 4.2.11 電滲透率 4.2.12 不同環境下鋼筋腐蝕與重量損失關係 4.2.13 不同灰縫比例之磁磚披覆影響 4.2.14 不同通電齡期下之磁磚披覆影響 4.2.15 腐蝕電流密度與表面阻抗之關係 4.3 全尺寸試體試驗 4.3.1 無表面披覆裸柱 4.3.2 磁磚披覆全尺寸構件 4.4 綜合比較 4.5 微觀結構分析 4.5.1 SEM微觀分析 4.5.2 XRD微觀分析 第五章 現地鋼筋腐蝕量測步驟之建立 5.1 前言 5.2 以脈衝電流法測定鋼筋腐蝕速率 5.3 以腐蝕速率推算腐蝕量 第六章 結論與建議 6.1 結論 6.2 建議 參考文獻 附錄A 全尺寸試體腐蝕電流密度資料 附錄B SEM分析圖

1.Scully, J. C., "The fundamentals of corrosion", Pergamon Press, New York, NY, pp. 56-60, 1975.
2.Fontana, M. G., "Corrosion engineering", McGraw-Hill, New York, NY, pp. 5-152, 1986.
3.Bentz, D. P., Jensen, O. M., Coats, A. M., and Glasser, F. P., "Influence of silica fume on diffusivity in cement-based materials: I. Experimental and computer modeling studies on cement pastes", Cement and Concrete Research, Vol. 30. No. 6, pp. 953-962,2000.
4.Malhotra, V. M. and Carette, G. G., "Silica fume: a pozzolan of new interest for use in some concretes", Concrete Construction, pp. 445-446,1982.
5.Mehta, P. K., "Concrete : structure, properties and materials", Prentice-Hall, NJ, pp. 153, 1986.
6.中國土木水利工程學會,「混凝土工程設計規範與解說(土木401-96)」,科技圖書公司,台北市,pp. E-8,2012。
7.黃然、楊仲家及張正忠,「腐蝕混凝土梁構件力學行為之研究」,國立海洋大學,基隆市,1995。
8.Arya, C., Buenfeld, N. R., and Newman, J. B., "Factors influencing chloride-binding in concrete", Cement and Concrete Research, Vol. 20. No. 2, pp. 291-300,1990.
9.Song, H. W., Lee, C. H., and Ann, K. Y., "Factors influencing chloride transport in concrete structures exposed to marine environments", Cement and Concrete Composites, Vol. 30. No. 2, pp. 113-121,2008.
10.Corbo, J. and Farazam, H., "Influence of Three Commonly Used Inorganic Compounds on Pore Solution Chemistry and Their Possible Implications to the Corrosion of Steel in Concrete", ACI Materials Journal, Vol. 86. No. 5, pp. 498-502,1989.
11.Puyate, Y. T. and Lawrence, C. J., "Steady state solutions for chloride distribution due to wick action in concrete", Chemical Engineering Science, Vol. 55. No. 16, pp. 3329-3334,2000.
12.Johannesson, B. F., "Diffusion of a mixture of cations and anions dissolved in water", Cement and Concrete Research, Vol. 29. No. 8, pp. 1261-1270,1999.
13.AASHTO T260-97, "Standard Method of Test for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials", American Association of State Highway and Transportation Officials, Washington, D.C., 1997.
14.陳冠霖,「添加矽灰與飛灰對鋼筋混凝土腐蝕行為影響之研究」,國立臺灣海洋大學,基隆市,pp. 10-11,2007。
15.柯賢文,「腐蝕及其防制」,全華,台北市,pp. 5-75,2012。
16.Broomfield, J. P., "Corrosion of steel in concrete : understanding, investigation and repair", E & FN Spon, London, UK, pp. 7, 1997.
17.ASTM C 876-09, "Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete", ASTM International, West Conshohocken, PA, 2009.
18.葉桎銘,「不同拌合條件及養護環境下砂漿試體內部氯離子擴散與鋼筋腐蝕之關係」,國立臺灣科技大學,台北,pp. 71-85,2011。
19.ASTM G 59-09, "Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements", ASTM International, West Conshohocken, PA, 2009.
20.Stern, M., "A mehtod for determining corrosion rates from linear polarization data", Corrosion, Vol. 14. No. 9, pp. 60-64,1958.
21.紀茂傑,「混凝土耐久性影響因素及評估方法之研究」,國立海洋大學,基隆市,pp. 20-22,2002。
22.Ford, S. J., Shane, J. D., and Mason, T. O., "Assignment of features in impedance spectra of the cement-paste/steel system", Cement and Concrete Research, Vol. 28. No. 12, pp. 1737-1751,1998.
23.Rodriguez, P., Ramirez, E., and Gonzalez, J. A., "Methods for studying corrosion in reinforced concrete", Cement and Concrete Research, Vol. 46. No. 167, pp. 81-90,1994.
24.Jones, D. A., "Principles and prevention of corrosion", Prentice Hall, Upper Saddle River, NJ, pp. 101, 1996.
25.王鼎智,「離子在不同混凝土裂縫型式下之傳輸與對鋼筋腐蝕影響之研究」,國立成功大學,台南,pp. 10-11,2002。
26.Brousseau, R. and McCarter, W. J., "The A.C. response of hardened cement paste", Cement and Concrete Research, Vol. 20. No. 6, pp. 891-900,1990.
27.Qiao, G. and Ou, J., "Corrosion monitoring of reinforcing steel in cement mortar by EIS and ENA", Electrochimica Acta, Vol. 52. No. 28, pp. 8008-8019,2007.
28.Oskar Klinghoffer, M. S., "In situ monitoring of reinforcement corrosion by means of eletrochemical methods", pp. 5-7,1995.
29.GalvaPluse GP-5000 Instruction and Maintenance Manual", Germann Instruments A/S, Copenhagen, Denmark., 2012.
30.何明錦、邱建國、歐昱辰、蔡立倫及何家維,「鋼筋腐蝕對於鋼筋混凝土建築構件耐震性能與生命週期之影響」,內政部建築研究所,新北市,2009。
31.何明錦、歐昱辰、邱建國及陳君弢,「鋼筋腐蝕對於鋼筋混凝土建築構件耐震性能與生命週期之影響:含腐蝕橫向鋼筋的梁構件」,內政部建築研究所,新北市,2011。
32.卓奕杉,「RC梁鋼筋腐蝕之剪力行為評估與縱向鋼筋腐蝕之耐震行為」,國立臺灣科技大學,台北市,2012。
33.林建宏、陳君弢、歐昱辰、邱建國及葉勁宏,「梁主筋腐蝕位置對桿件韌性行為的影響」,內政部建築研究所,新北市,2012。
34.Newton, C. J. and Sykes, J. M., "A Galvanostatic pulse technique for investigation of steel corrosion in concrete", Corrosion Science, Vol. 28. No. 11, pp. 1051-1074,1988.
35.Oskar Klinghoffer, C. E., "Rebar Corrosion Rate Measurements for Service Life Estimates", pp. 4-13,2000.
36.黃兆龍,「混凝土中氯離子含量檢測技術及試驗」,詹氏書局,台北市,pp. 2-21,2002。
37.Uhlig, H. H. and Revie, R. W., "Corrosion and corrosion control : an introduction to corrosion science and engineering", Wiley, New York, NY, pp. 90-91, 1985.
38.ASTM C150/C150M-11, "Standard Specification for Portland Cement", ASTM International, West Conshohocken, PA, 2011.
39.ASTM C 94-09, "Standard Specification for Ready-Mixed Concrete", ASTM International, West Conshohocken, PA, 2009.
40.ASTM C 143-08, "Standard Specification for Portland Cement", ASTM International, West Conshohocken, PA, 2008.
41.ASTM C127-07, "Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate", ASTM International, West Conshohocken, PA, 2011.
42.ASTM C29 / C29M-09, "Standard Test Method for Bulk Density ("Unit Weight") and Voids in Aggregate", ASTM International, West Conshohocken, PA, 2011.
43.ASTM 125-10a, "Standard Terminology Relating to Concrete and Concrete Aggregates", ASTM International, West Conshohocken, PA, 2011.
44.Topward>>Produxt>>DC Power Supply. http://www.topward.com/data/3000.pdf.
45.VersaSTAT 4 电化学工作站. http://www.par-solartron.com.cn/our_brands/par/potentiostats/versastat-4/#specification.

無法下載圖示 全文公開日期 2019/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE