簡易檢索 / 詳目顯示

研究生: 邱明智
Ming-Chih Chiu
論文名稱: 基於微生物遺傳演算法之可調式生成對抗網路
AdjustableGAN: An Adjustable Generative Adversarial Network based on Microbial Genetic Algorithm
指導教授: 花凱龍
Kai-Lung Hua
口試委員: 陳駿丞
鍾國亮
楊傳凱
陳建中
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 41
中文關鍵詞: 生成對抗網路深度學習模型壓縮基因演算法
外文關鍵詞: Generative Adversarial Network, Deep Learning, Model Compression, Genetic Algorithm
相關次數: 點閱:391下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來手機處理器的大幅進展讓在移動裝置上使用深度學習網路更加有機會,也因此產生了許多以深度學習生成對抗網路為名的修圖應用。但要運行大型的生成對抗網路需要運算量對多數移動裝置而言仍然過於巨大。本篇論文我們提出了一個利用微生物基因演算法的方法來達成可調整式漸進生長的生成對抗網路,使其能在符合硬體限制的運算成本下生成擬真影像如人臉。實際使用時,生成器先隨機編碼成數個二元字串為一個群體,再以基因演算法做優化到一個穩定的狀態,接著使用微生物基因演算法找出學習好的重要的卷積核,接著這個學習好的生成對抗網路的大小就能以改變那些卷積層結構的方式被調整。實驗顯示我們的方法在各種壓縮率下都能達到不錯的表現。


    Recent advances in mobile processors made it feasible to employ deep learning networks to mobile devices. Because of this, many image editing applications based on “deep learning Generative Adversarial Networks (GANs)”techniques were born. However, the computational cost for a big GAN model is still too high for general mobile devices. In this paper, we developed an adjustable generative adversarial network via microbial genetic algorithm. The proposed adjustable GAN algorithm is able to generate realistic images, such as human faces, at various computational costs conditioning on different hardware limits. In this paper, the proposed generator is first encoded as a binary string representing a population and optimized iteratively via genetic algorithm to reach an initial stable state, then a microbial genetic algorithm is utilized to discover the importance level of learned convolution filters. Afterward, the learned GAN model size can be further adjusted by editing the structure of those convolution filters. Extensive experiments demonstrate that the proposed method is effective in various model sizes while achieving satisfactory results.

    Contents Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VIII 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Progressive Growing GAN . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Genetic Algorithm GAN Compression on Progressive Growing GAN Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 Modeling Redundancy in Generator . . . . . . . . . . . . . . . . 5 2.2.2 Applying of Genetic Algorithm on Convolution Filters . . . . . . 6 2.3 Adjustable GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Generating Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Style Mixing Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4 Quantitative Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.5 Comparison with GA pruning method . . . . . . . . . . . . . . . . . . . 28 4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    [1] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
    Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
    NIPS, pages 2672–2680, 2014.
    [2] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, ´ Andrew Cunningham, Alejandro Acosta, Andrew P Aitken, Alykhan Tejani, Johannes Totz, Zehan
    Wang, et al. Photorealistic single image super-resolution using a generative adversarial network. In CVPR, volume 2, page 4, 2017.
    [3] Jun-Yan Zhu, Philipp Krahenb ¨ uhl, Eli Shechtman, and ¨ Alexei A Efros. Generative visual manipulation on the natural image manifold. In ECCV, pages 597–613, 2016.
    [4] Radford, A., L. Metz, and S. Chintala, Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. CoRR, 2015.abs/1511.06434.
    [5] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of GANs for improved quality, stability, and variation. CoRR, abs/1710.10196, 2017
    [6] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and
    elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182–197, 2002.
    [7] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired imageto-image translation using cycle-consistent adversarial networks. In ICCV, pages
    2223–2232, 2017.
    [8] Harvey, I. (2011). The microbial genetic algorithm. In Advances in artificial life. Darwin Meets von Neumann, pages 126–133. Springer.
    [9] Yunhe Wang, Chang Xu, Jiayan Qiu, Chao Xu, and Dacheng Tao. Towards evolutional compression. In SIGKDD, 2018.
    [10] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and
    elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary computation, 6(2):182–197, 2002.
    [11] H. Shu, Y. Wang, X. Jia, K. Han, H. Chen, C. Xu, Q. Tian, and C. Xu “Coevolutionary compression for unpaired image translation,”in ICCV, 2019.
    [12] Rosenblatt, Frank. ”The Perceptron—a perceiving and recognizing automaton”. Report 85-460-1. Cornell Aeronautical Laboratory.
    [13] Huang, Xun, and Serge Belongie. “Arbitrary Style Transfer in Real-Time with
    Adaptive Instance Normalization.”In ICCV, 2017.
    [14] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE CVPR, pages 4401–
    4410, 2019.

    無法下載圖示 全文公開日期 2025/08/21 (校內網路)
    全文公開日期 2025/08/21 (校外網路)
    全文公開日期 2025/08/21 (國家圖書館:臺灣博碩士論文系統)
    QR CODE