簡易檢索 / 詳目顯示

研究生: 張翊珊
Yi-Shan Chang
論文名稱: 大面積有機太陽能電池之優化與介面修飾
Optimization and interface modification of large-area organic solar cells
指導教授: 何郡軒
Jinn-Hsuan Ho
戴龑
Yian Tai
口試委員: 李文亞
Wen-Ya Lee
何郡軒
Jinn-Hsuan Ho
戴龑
Yian Tai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 53
中文關鍵詞: 有機太陽能電池大面積圓棒塗佈自組裝單分子薄膜
外文關鍵詞: Organic solar cells, large area, Meniscus coating, Self-assembled monolayer
相關次數: 點閱:170下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用圓棒塗佈法取代傳統旋轉塗佈法製作有機太陽能電池,並嘗試將面積逐漸放大從而探討大面積的電子傳遞機制再利用自組裝分子薄膜技術做介面修飾。
    圓棒塗佈速度除了影響膜的厚度,塗佈時也會影響高分子的排列,以塗佈P3HT:PCBM可發現速度越快讓P3HT排列變好但P3HT:PCBM整體的相分離卻變差;主動層使用氯苯為溶劑在快速乾燥下生成的膜較不均勻會影響元件的串聯電阻,改使用沸點高的鄰二氯苯生成的膜較為平整,提升元件效率;將太陽能電池的面積放大到超過1cm²,塗佈於5.5*2cm²的基板製作1.5、2、2.5 cm²時溶液使用量的調控也會影響成膜的品質,測試出來為40μl最適合。最後使用不同偶極矩的自組裝單分子薄膜應用在不同大小面積上,作為正電極與電子傳導層之介面修飾。


    This study uses the meniscus coating method to replace the traditional spin coating method to fabricate organic solar cells. Scale-up organic solar cell’s work area and discuss the large-area electron transfer mechanism. Finally, use self-assembled molecular technology for interface modification.
    The coating speed mainly affects the thickness of the film, but also affects the arrangement of the polymer when the film is wet. The faster the speed, the thinner the film thickness but the better the arrangement. The active layer uses chlorobenzene as a non-uniform film because the solvent rapid drying on the hot plate when we are coating P3HT:PCBM the non-uniform film will affect the series resistance of the device. The film produced by using o-dichlorobenzene with a high boiling point is relatively flat and improves the efficiency of the device. The area of the solar cell is enlarged to more than 1cm², the series resistance becomes large. So through the adjustment of the amount of solution, efficiency increased from 0.64% to 0.81% for 2.5cm². Finally, the self-assembled monolayer with different dipole moments is used in the different work areas as the interface modification between the electrode and the electron buffer layer.

    目錄 中文摘要 I ABSTRACT II 致謝 III 目錄 VI 圖目錄 X 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧與理論 3 2.1 有機太陽能電池簡介 3 2.1.1 有機太陽能電池的種類 3 2.1.2 有機太陽能電池的理論 4 2.2 太陽能電池的參數 5 2.3 大面積太陽能電池製程技術 9 2.3.1 旋轉塗佈(spin coating) 9 2.3.2 刮刀塗佈(doctor-blade coating) 10 2.3.3 精密狹縫式塗佈法(slot die coating) 11 2.3.4 噴墨印刷法(Ink-Jet technology) 12 2.3.5 捲對捲加工法(roll-to-roll) 13 2.4 自組裝單分子薄膜 14 2.4.1 自組裝單分子薄膜簡介 14 2.4.2 自組裝單分子薄膜製作方式 16 2.4.3 自組裝單分子薄膜應用 16 第三章 實驗設備與流程 17 3.1 實驗藥品與耗材 17 3.2 實驗設備 18 3.3 實驗步驟 18 3.3.1 自組裝單分子薄膜的製備 18 3.3.2 太陽能電池元件的製備 19 3.4 分析儀器介紹 20 3.4.1 太陽光源模擬器 20 3.4.2 場發射掃描式電子顯微鏡(Field Emission SEM) 20 3.4.3 紫外-可見光譜儀(UV-Visible Spectrometer) 21 3.4.4 接觸角量測儀 21 3.4.5 原子力顯微鏡(Atomic Force Microscpoic, AFM) 21 3.4.6 X 光繞射分析儀(XRD) 21 第四章 實驗結果與討論 22 4.1 圓棒塗佈法製備有機太陽能電池元件特性分析 22 4.1.1 電子傳導層不同刮速成膜性質與元件測試 22 4.1.2 主動層以氯苯為溶劑之薄膜特性與元件測試 26 4.1.3 主動層以氯苯為溶劑於大面積化有機太陽能電池元件特性分析 34 4.1.4 主動層以二氯苯為溶劑薄膜特性與元件測試 35 4.1.5 主動層以鄰二氯苯為溶劑於大面積化有機太陽能電池元件特性分析 41 4.1.6 不同溶液量對大面積元件影響 42 4.2 以 SAM 修飾正電極的薄膜分析與元件分析 44 4.3 大面積電子元件機制及應用 47 4.3.1 機制及理論 47 4.3.2 大面積太陽能電池的應用 48 第五章 結論與未來展望 49 參考文獻 50

    參考文獻
    1. NREL-Best Research-Cell Efficiency. https://www.nrel.gov/pv/cell-efficiency.html.
    2. Karl, N., Organic semiconductors. In Festkörperprobleme 14: Plenary Lectures of the Divisions “Semiconductor Physics”, “Low Temperature Physics”, “Metal Physics” of the German Physical Society, Freudenstadt, April 1–5, 1974, Queisser, H. J., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 1974; pp 261-290.
    3. Tang, C. W., Two‐layer organic photovoltaic cell. Applied Physics Letters 1986, 48 (2), 183-185.
    4. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270, 1789.
    5. I-V curve. https://www.soft-matter.uni-tuebingen.de/organic_photovoltaics.html.
    6. Kamaruddin, S. A.; Chan, K.-Y.; Yow, H.-K.; Zainizan Sahdan, M.; Saim, H.; Knipp, D., Zinc oxide films prepared by sol–gel spin coating technique. Applied Physics A 2011, 104 (1), 263-268.
    7. Choi, J.-Y.; Alford, T. L.; Honsberg, C. B., Solvent-Controlled Spin-Coating Method for Large-Scale Area Deposition of Two-Dimensional Silica Nanosphere Assembled Layers. Langmuir 2014, 30 (20), 5732-5738.
    8. Birnie, D. P., Spin Coating Technique. In Sol-Gel Technologies for Glass Producers and Users, Aegerter, M. A.; Mennig, M., Eds. Springer US: Boston, MA, 2004; pp 49-55.
    9. Busuioc, C.; Jinga, S. I.; Andronescu, E., Barium magnesium tantalate thin films obtained by sol-gel processing. Revista Romana de materiale = Romanian journal of materials = RRM 2012, 42 (3), 299-305.
    10. Berni, A.; Mennig, M.; Schmidt, H., Doctor Blade. In Sol-Gel Technologies for Glass Producers and Users, Aegerter, M. A.; Mennig, M., Eds. Springer US: Boston, MA, 2004; pp 89-92.
    11. Back, H.; Kim, J.; Kim, G.; Kyun Kim, T.; Kang, H.; Kong, J.; Ho Lee, S.; Lee, K., Interfacial modification of hole transport layers for efficient large-area perovskite solar cells achieved via blade-coating. Solar Energy Materials and Solar Cells 2016, 144, 309-315.
    12. Becerril, H. A.; Roberts, M. E.; Liu, Z.; Locklin, J.; Bao, Z., High-Performance Organic Thin-Film Transistors through Solution-Sheared Deposition of Small-Molecule Organic Semiconductors. Advanced Materials 2008, 20 (13), 2588-2594.
    13. Jeon, H. G.; Cho, C. Y.; Shin, J. C.; Park, B., Inverted polymer solar cells fabricated by a pre-metered coating process. Journal of Materials Chemistry 2012, 22 (43), 23022-23029.
    14. Ruderer, M. A.; Guo, S.; Meier, R.; Chiang, H.-Y.; Körstgens, V.; Wiedersich, J.; Perlich, J.; Roth, S. V.; Müller-Buschbaum, P., Solvent-Induced Morphology in Polymer-Based Systems for Organic Photovoltaics. Advanced Functional Materials 2011, 21 (17), 3382-3391.
    15. Al-Ibrahim, M.; Ambacher, O.; Sensfuss, S.; Gobsch, G., Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene. Applied Physics Letters 2005, 86 (20), 201120.
    16. Dang, M.-T.; Wantz, G.; Bejbouji, H.; Urien, M.; Dautel, O., J.; Vignau, L.; Hirsch, L., Polymeric solar cells based on P3HT:PCBM: Role of the casting solvent. Solar Energy Materials and Solar Cells 2011, 95 (12), 3408-3418.
    17. Reinspach, J. A.; Diao, Y.; Giri, G.; Sachse, T.; England, K.; Zhou, Y.; Tassone, C.; Worfolk, B. J.; Presselt, M.; Toney, M. F.; Mannsfeld, S.; Bao, Z., Tuning the Morphology of Solution-Sheared P3HT:PCBM Films. ACS Applied Materials & Interfaces 2016, 8 (3), 1742-1751.
    18. Shaw, L.; Yan, H.; Gu, X.; Hayoz, P.; Weitz, R. T.; Kaelblein, D.; Toney, M. F.; Bao, Z., Microstructural Evolution of the Thin Films of a Donor–Acceptor Semiconducting Polymer Deposited by Meniscus-Guided Coating. Macromolecules 2018, 51 (11), 4325-4340.
    19. Giri, G.; Verploegen, E.; Mannsfeld, S. C. B.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z., Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 2011, 480 (7378), 504-508.
    20. Large-Scale Deposition of Organic Solar Cells. https://www.ossila.com/pages/opv-large-scale-deposition.
    21. Ding, X.; Liu, J.; Harris, T. A. L., A review of the operating limits in slot die coating processes. AIChE Journal 2016, 62 (7), 2508-2524.
    22. Patidar, R.; Burkitt, D.; Hooper, K.; Richards, D.; Watson, T., Slot-die coating of perovskite solar cells: An overview. Materials Today Communications 2020, 22, 100808.
    23. Carnahan, R. D.; Hou, S. L., Ink Jet Technology. IEEE Transactions on Industry Applications 1977, IA-13 (1), 95-104.
    24. Le, H. P., Progress and Trends in Ink-jet Printing Technology. Journal of Imaging Science and Technology 1998, 42 (1), 49-62.
    25. Calvert, P., Inkjet Printing for Materials and Devices. Chemistry of Materials 2001, 13 (10), 3299-3305.
    26. Peng, X.; Yuan, J.; Shen, S.; Gao, M.; Chesman, A. S. R.; Yin, H.; Cheng, J.; Zhang, Q.; Angmo, D., Perovskite and Organic Solar Cells Fabricated by Inkjet Printing: Progress and Prospects. Advanced Functional Materials 2017, 27 (41), 1703704.
    27. Khodabakhsh, S.; Sanderson, B. M.; Nelson, J.; Jones, T. S., Using Self-Assembling Dipole Molecules to Improve Charge Collection in Molecular Solar Cells. Advanced Functional Materials 2006, 16 (1), 95-100.
    28. Kim, J. S.; Park, J. H.; Lee, J. H.; Jo, J.; Kim, D.-Y.; Cho, K., Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics. Applied Physics Letters 2007, 91 (11), 112111.
    29. de Boer, B.; Hadipour, A.; Mandoc, M. M.; van Woudenbergh, T.; Blom, P. W. M., Tuning of Metal Work Functions with Self-Assembled Monolayers. Advanced Materials 2005, 17 (5), 621-625.
    30. Ulman, A., PART THREE - SELF–ASSEMBLED MONOLAYERS. In An Introduction to Ultrathin Organic Films, Ulman, A., Ed. Academic Press: San Diego, 1991; pp 237-304.
    31. Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chemical Reviews 1996, 96 (4), 1533-1554.
    32. Doudevski, I.; Hayes, W. A.; Schwartz, D. K., Submonolayer Island Nucleation and Growth Kinetics during Self-Assembled Monolayer Formation. Physical Review Letters 1998, 81 (22), 4927-4930.
    33. Schwartz, D. K., MECHANISMS AND KINETICS OF SELF-ASSEMBLED MONOLAYER FORMATION. Annual Review of Physical Chemistry 2001, 52 (1), 107-137.
    34. Verploegen, E.; Mondal, R.; Bettinger, C. J.; Sok, S.; Toney, M. F.; Bao, Z., Effects of Thermal Annealing Upon the Morphology of Polymer–Fullerene Blends. Advanced Functional Materials 2010, 20 (20), 3519-3529.
    35. Verploegen, E.; Miller, C. E.; Schmidt, K.; Bao, Z.; Toney, M. F., Manipulating the Morphology of P3HT–PCBM Bulk Heterojunction Blends with Solvent Vapor Annealing. Chemistry of Materials 2012, 24 (20), 3923-3931.
    36. Fan, X.; Fang, G. J.; Qin, P. L.; Cheng, F.; Zhao, X. Z., Rapid phase segregation of P3HT:PCBM composites by thermal annealing for high-performance bulk-heterojunction solar cells. Applied Physics A 2011, 105 (4), 1003-1009.
    37. Yao, E.-P.; Ho, C.-S.; Yu, C.; Huang, E. L.; Lai, Y.-N.; Hsu, W.-C., An Alternative Approach for Improving Performance of Organic Photovoltaics by Light-Enhanced Annealing. International Journal of Photoenergy 2014, 2014, 120693.
    38. Sigma-Aldrich
    4-Methoxybenzoic acid. https://www.sigmaaldrich.com/TW/en/product/aldrich/117390.
    39. Sigma-Aldrich
    4-(Trifluoromethyl)benzoic acid. https://www.sigmaaldrich.com/TW/en/product/aldrich/196894.
    40. Yip, H.-L.; Hau, S. K.; Baek, N. S.; Ma, H.; Jen, A. K.-Y., Polymer Solar Cells That Use Self-Assembled-Monolayer- Modified ZnO/Metals as Cathodes. Advanced Materials 2008, 20 (12), 2376-2382.
    41. Choi, S.; Jr., W. J. P.; Kippelen, B., Area-scaling of organic solar cells. Journal of Applied Physics 2009, 106 (5), 054507.

    無法下載圖示 全文公開日期 2024/10/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE