簡易檢索 / 詳目顯示

研究生: 郭昭延
Chao-Yen Kuo
論文名稱: 鋰離子電池預置鋰技術之研究
Research on Prelithiation Technique for Lithium Ion Batteries
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 蘇威年
Wei-Nien Su
程敬義
Jim Cherng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 87
中文關鍵詞: 含鋰物質預置鋰二氧化鈦全電池
外文關鍵詞: Lithium Compound, Prelithiation, TiO2, Full Cell
相關次數: 點閱:157下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究為利用含鋰物質分解出鋰離子的特性,應用於預置鋰的技術上,對全電池充電將分解所得之鋰離子嵌入至全電池負極中,並於放電時將嵌回正極,可將不含鋰離子之正極材料應用於鋰電池系統中。在10 mA/gx電流密度對含鋰物質充電以含鋰物質:導電碳:黏著劑重量比= 30:60:10之組合有最高的轉化率約200 mAh/gmixture及最低的過電位約4 V。再者,以50 mA/gx的電流密度進行充電時間為10 小時內(約0.1 C),電容量約為410 mA/gX,過電位約為4.2 V。接著探討不含鋰之負極材料---二氧化鈦之電化學表現,其在經400oC鍛燒後有最佳之循環壽命,在0.1 C的充放電速率下其可逆電容量約為200 mAh/gTiO2且循環50圈後維持率仍有99%,且在變速率條件下依然有最佳的表現。將含鋰物質與二氧化鈦混合進行半電池測試時,預置鋰放電階段會有副反應發生,其效應尤以將含鋰物質/二氧化鈦正極與石墨化中間相碳微珠(MCMB)負極組成全電池後更為顯著,其會持續消耗鋰離子並影響電化學表現。然將電池在預置鋰充電階段後拆解重組可改善此現象;亦嘗試使用於碳硫複合物系統中,然加入N-甲基吡咯烷酮(NMP)後碳硫複合物硫與含鋰物質會轉變成Li2SO4•H2O,其形成機制仍須進一步探討。


In this research, the decomposable characteristic of lithium compound into Li+ is applied to prelithiation technique in our research. During full cell charging, Li+ released from lithium compound will intercalate into anode material and return to cathode material during discharging. In this way, non-lithiated cathode material can be applied in the system of lithium ion battery. By charging lithium compound electrode with current density of 10 mA/gx, the weight ratio combination of lithium compound: conductive carbon: binder= 30: 60: 10 stands out to have the best conversion of approximately 200 mAh/gmixture and the lowest overpotential, 4 V. Furthermore, by applying the current density of 50 mA/gx, the charging time is nearly 10 hours, which equals to 0.1 C, and produce 410 mAh/gx. Next, we investigated the electrochemical performance of TiO2, the cathode material we selected, and observed that after being annealed at 400oC, it has the best cycling performance at 0.1 C , of which reversible capacity is 200 mAh/g and the retention is 99% after cycling for 50 cycles, and has the best rate capability. During the half cell test of Lihium compound/TiO2, side reactions occured during discharging period of prelithiation, and the effect is more significant in the full cell of lithium compound/TiO2 and MCMB, which consumes Li+ and affecting electrochemical performance,. After disassembling and reassembling the cell after prelithiation charging process, the phenomenon is improved. We also applied the technique in C/S system, but NMP might cause C/S and lithium compound to react to become Li2SO4•H2O, and the mechanism needs to be further investigated.

摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第1章、 緒論 1 1.1. 前言 1 1.2. 鋰離子二次電池的發展 2 1.3. 鋰離子二次電池之組成與機制 4 1.4. 二次鋰離子之各元件介紹 6 1.4.1. 正極(陰極) 6 1.4.2. 負極(陽極) 8 1.4.3. 電解液 10 1.4.4. 隔離膜 14 1.4.5. 研究動機與目的 15 第2章、 文獻回顧 17 2.1. 預置鋰 17 2.2. 含鋰物質的可分解 25 2.3. 二氧化鈦 29 2.4. 鋰硫電池 34 第3章、 實驗 36 3.1. 儀器設備 36 3.2. 實驗藥品 38 3.3. 實驗步驟 39 3.3.1. 材料合成 39 3.3.2. 材料鑑定與分析 42 3.3.3. 材料電化學特性測試 44 第4章、 結果與討論 48 4.1. 含鋰物質之電性探討 48 4.1.1. 含鋰物質、導電碳、黏著劑重量比對充放電的影響 48 4.1.2. 電流密度對含鋰物質充放電表現的影響 51 4.2. 二氧化鈦之電性探討 52 4.2.1. 鍛燒溫度對二氧化鈦結晶度及晶粒大小的影響 52 4.2.2. 鍛燒溫度對二氧化鈦粒徑大小的影響 55 4.2.3. 鍛燒溫度對二氧化鈦電化學表現的影響 56 4.3. 含鋰物質/二氧化鈦之電性探討 61 4.3.1. 半電池系統 61 4.3.2. 全電池系統 64 4.4. 含鋰物質/碳硫複合物之電性探討 70 4.4.1. 含鋰物質於鋰硫電池電解液之電性探討 70 4.4.2. 碳硫複合物之電性探討 72 4.4.3. 含鋰物質/碳硫複合物之電性探討 74 第5章、 結論 77 未來展望 79 參考文獻 80 附錄A 83

1. 李協聰, P2-NaxCo2/3Mn1/3O2層狀化合物之結構與其表面修飾對電池性能增進機制之探討. 口試PPT, 2013.
2. 林振華、林振富, 充電式鋰離子電池之材料與應用.
3. 陳金銘, 電動車動力鋰電池材料技術趨勢. 工研院電子報, 2011.
4. 宏賴科技, 鋰電池種類. 宏賴科技網站.
5. Manthiram, A., et al., Nanostructured electrode materials for electrochemical energy storage and conversion. Energy & Environmental Science, 2008. 1(6): p. 621-638.
6. Mizushima, K., et al., LixCoO2: A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
7. Mukherjee, R., et al., Defect-induced plating of lithium metal within porous graphene networks. Nat Commun, 2014. 5.
8. Hy, S., et al., Direct In situ Observation of Li2O Evolution on Li-Rich High-Capacity Cathode Material, Li[NixLi(1–2x)/3Mn(2–x)/3]O2 (0 ≤ x ≤0.5). Journal of the American Chemical Society, 2013. 136(3): p. 999-1007.
9. Padhi, A.K., K.S. Nanjundaswamy, and J.B. Goodenough, Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries. Journal of The Electrochemical Society, 1997. 144(4): p. 1188-1194.
10. Hsu, K.-F., S.-Y. Tsay, and B.-J. Hwang, Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gel route. Journal of Materials Chemistry, 2004. 14(17): p. 2690-2695.
11. Lepage, D., et al., A Soft Chemistry Approach to Coating of LiFePO4 with a Conducting Polymer. Angewandte Chemie International Edition, 2011. 50(30): p. 6884-6887.
12. 林素琴, 大好前景-鋰電池材料發展分析. 工研院電子報, 2009.
13. Marom, R., et al., A review of advanced and practical lithium battery materials. Journal of Materials Chemistry, 2011. 21(27): p. 9938-9954.
14. 呂學隆, 鋰電池電解液產業在兩岸的發展現況. 工業材料雜誌, 2011. 289.
15. Goodenough, J.B. and Y. Kim, Challenges for rechargeable Li batteries. Chemistry of Materials, 2010. 22(3): p. 587-603.
16. Peled, E., D. Golodnitsky, and G. Ardel, Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes. Journal of The Electrochemical Society, 1997. 144(8): p. L208-L210.
17. Li, L., F. Meng, and S. Jin, High-Capacity Lithium-Ion Battery Conversion Cathodes Based on Iron Fluoride Nanowires and Insights into the Conversion Mechanism. Nano Letters, 2012. 12(11): p. 6030-6037.
18. Hong, Y.-S., et al., Amorphous FePO4 as 3 V cathode material for lithium secondary batteries. Journal of Materials Chemistry, 2002. 12(6): p. 1870-1874.
19. Yang, Y., et al., Graphene Nanoribbon/V2O5 Cathodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014. 6(12): p. 9590-9594.
20. Li, Y. and B. Fitch, Effective enhancement of lithium-ion battery performance using SLMP. Electrochemistry Communications, 2011. 13(7): p. 664-667.
21. Jarvis, C.R., et al., A lithium ion cell containing a non-lithiated cathode. Journal of Power Sources, 2005. 146(1–2): p. 331-334.
22. Zheng, S., et al., In Situ Formed Lithium Sulfide/Microporous Carbon Cathodes for Lithium-Ion Batteries. ACS Nano, 2013. 7(12): p. 10995-11003.
23. Liu, N., et al., Prelithiated Silicon Nanowires as an Anode for Lithium Ion Batteries. ACS Nano, 2011. 5(8): p. 6487-6493.
24. Brückner, J., et al., Carbon-Based Anodes for Lithium Sulfur Full Cells with High Cycle Stability. Advanced Functional Materials, 2014. 24(9): p. 1284-1289.
25. Yang, Y., et al., New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy. Nano Letters, 2010. 10(4): p. 1486-1491.
26. Kim, S.-W., et al., Energy storage in composites of a redox couple host and a lithium ion host. Nano Today, 2012. 7(3): p. 168-173.
27. Ogasawara, T., et al., Rechargeable Li2O2 Electrode for Lithium Batteries. Journal of the American Chemical Society, 2006. 128(4): p. 1390-1393.
28. Giordani, V., et al., H2O2 Decomposition Reaction as Selecting Tool for Catalysts in Li – O2 Cells. Electrochemical and Solid-State Letters, 2010. 13(12): p. A180-A183.
29. Hu, Y., et al., Size effect of lithium peroxide on charging performance of Li-O2 batteries. Nanoscale, 2014. 6(1): p. 177-180.
30. Choi, N.-S., et al., Tris(pentafluorophenyl) borane-containing electrolytes for electrochemical reversibility of lithium peroxide-based electrodes in lithium–oxygen batteries. Journal of Power Sources, 2013. 225(0): p. 95-100.
31. Hutchings, G.S., Q. Lu, and F. Jiao, Synthesis and Electrochemistry of Nanocrystalline M-TiO2 (M = Mn, Fe, Co, Ni, Cu) Anatase. Journal of The Electrochemical Society, 2013. 160(3): p. A511-A515.
32. Rai, A.K., et al., Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries. Electrochimica Acta, 2013. 90(0): p. 112-118.
33. Ali, Z., et al., Design and evaluation of novel Zn doped mesoporous TiO2 based anode material for advanced lithium ion batteries. Journal of Materials Chemistry, 2012. 22(34): p. 17625-17629.
34. Wang, Y., B.M. Smarsly, and I. Djerdj, Niobium Doped TiO2 with Mesoporosity and Its Application for Lithium Insertion. Chemistry of Materials, 2010. 22(24): p. 6624-6631.
35. Wang, Y., T. Chen, and Q. Mu, Electrochemical performance of W-doped anatase TiO2 nanoparticles as an electrode material for lithium-ion batteries. Journal of Materials Chemistry, 2011. 21(16): p. 6006-6013.
36. Ren, Y., et al., Synthesis and Superior Anode Performances of TiO2–Carbon–rGO Composites in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2012. 4(9): p. 4776-4780.
37. Myung, S.-T., et al., Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy & Environmental Science, 2013. 6(9): p. 2609-2614.
38. Rauh, R.D., et al., A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte. Journal of The Electrochemical Society, 1979. 126(4): p. 523-527.
39. Yamin, H. and E. Peled, Electrochemistry of a nonaqueous lithium/sulfur cell. Journal of Power Sources, 1983. 9(3): p. 281-287.
40. Ji, X., K.T. Lee, and L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater, 2009. 8(6): p. 500-506.
41. Ji, X., et al., Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nat Commun, 2011. 2: p. 325.
42. Evers, S., T. Yim, and L.F. Nazar, Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li–S Battery. The Journal of Physical Chemistry C, 2012. 116(37): p. 19653-19658.
43. Jeddi, K., et al., Stabilizing lithium/sulfur batteries by a composite polymer electrolyte containing mesoporous silica particles. Journal of Power Sources, 2014. 245(0): p. 656-662.
44. Yabuuchi, N., et al., Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li2MnO3−LiCo1/3Ni1/3Mn1/3O2. Journal of the American Chemical Society, 2011. 133(12): p. 4404-4419.
45. Gao, J., et al., Effects of Liquid Electrolytes on the Charge–Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies. The Journal of Physical Chemistry C, 2011. 115(50): p. 25132-25137.

QR CODE