簡易檢索 / 詳目顯示

研究生: 中西昭博
Akihiro Nakanishi
論文名稱: 噴霧乾燥製造β-磷酸三鈣與生物活性玻璃複合粉末之特性分析
Fabrication and characterization of granulated β-tricalcium phosphate/bioactive glass composited powders by spray drying
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 王丞浩
Chen-Hao Wang
森賀俊広
Toshihiro Moriga
游進陽
Chin-Yang Yu
鄒年棣
Nien-Ti Tsou
施劭儒
Shao-Ju Shih
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 105
中文關鍵詞: β-磷酸三鈣生物活性玻璃噴霧熱解噴霧乾燥造粒
外文關鍵詞: β-tricalcium phosphate, bioactive glass, spray pyrolysis, spray drying, granulation
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

骨病或骨缺損是嚴重影響人類生活的問題。骨移植是常見的移植組織之一,磷酸鈣因其化學成分與人體骨骼相似而得到廣泛的應用。β-磷酸三鈣(β-TCP)具有生物相容性和生物吸收性,適用於骨骼移植。然而,由於β-TCP在體液中的溶解性佳,使其降解速度過快。年輕人骨骼生長速度快,而老年人骨骼生長速度慢,因此需要個人化的骨骼移植。有報道指出,β-TCP和生物活性玻璃(BG)複合材料可以實現個人化骨骼移植。
在這項研究中,β-TCP和生物活性玻璃(BG)的顆粒狀粉末是通過噴霧熱解和噴霧乾燥製造的。這些製造方法適用於大規模生產和合成球形顆粒。首先,β-TCP和BG的球形顆粒是通過噴霧熱解合成的。之後,這些粉末以不同比例的β-TCP/BG=100/0, 75/25, 50/50, 25/75, 0/100進行噴霧乾燥製粒。用XRD、FT-IR、SEM、氮氣吸附/解吸等溫線和UV-Vis測量所得粉末的晶相、形貌、表麵積和反射率。此外,通過模擬體液的pH值變化和MTT試驗研究了降解性能和細胞毒性。


Bone disease or bone defects are serious programs of human lives. Bone graft is one of the common transplantation tissues and calcium phosphate is widely used for it because its chemical composition is similar to human bone. β-tricalcium phosphate (β-TCP) is suitable for bone graft, which is biocompatibility and bioresorbability. However, the degradation rate of β-TCP is too fast because of its good solubility in body fluid. A personalized bone graft is needed because young people have fast bone growth while older people have slow bone growth. Therefore, β-TCP and bioactive glass (BG) composites have been reported to achieve the personalized bone graft.
In this study, β-TCP and bioactive glass (BG) granulated powder were fabricated by spray pyrolysis and spray drying. These fabrication methods are suitable for mass production and synthesis of spherical particles. At first, β-TCP and BG spherical particles were synthesized by spray pyrolysis. After that, these powders were granulated with the different weight% ratios of β-TCP/BG = 100/0, 75/25, 50/50, 25/75, 0/100 by spray drying. The resulting powders were measured by XRD, FT-IR, SEM, nitrogen adsorption/desorption isotherm, and UV-vis for investigation of crystal phase, morphology, surface area, and reflectance. In addition, the degradation property and cytotoxicity were investigated by pH change of simulated body fluid and MTT assay.

摘要 ⅳ ABSTRACT ⅴ Acknowledgement ⅵ Contents ⅶ List of Figures ⅸ List of Tables ⅻ Chapter 1. Introduction  1 Chapter 2. Literature review  4 2.1 Bone graft 4 2.2 Types of bioceramic 5 2.2.1 Bioinert (Type 1) 5 2.2.1.1 Al2O3 5 2.2.1.2 ZrO2 7 2.2.2 Porous (Type 2) 11 2.2.3 Bioactive (Type 3) 15 2.2.3.1 Hydroxyapatite (HAp) 15 2.2.3.2 Bioglass 16 2.2.4 Resorbable (Type 4) 21 2.3 Synthesis method 25 2.3.1 Solid-state method 25 2.3.2 Sol-gel method 27 2.3.3 Spray pyrolysis 31 2.3.3.1 Mechanism of spray pyrolysis 32 2.3.4 Spray drying 35 2.3.4.1 Mechanism of spray pyrolysis 36 2.3.4.2 Granulation by spray drying 39 Chapter 3. Experimental procedure 40 3.1 Chemical and equipment 40 3.2 β-TCP precursor solution 42 3.3 BG precursor solution 43 3.4 Spray pyrolysis 44 3.5 Slurry preparation for spray drying 45 3.6 Spray drying 46 3.7 In vitro degradation test 47 3.7.1 pH change 47 3.8.MTT assay 49 3.9 Characterization 50 3.9.1 X-ray diffraction 50 3.9.2 Fourier transform infrared spectroscopy 52 3.9.3 Scanning electron microscope 53 3.9.4 Specific surface area measurement by nitrogen adsorption/desorption isotherm 54 3.9.5 Reflectance measurement by ultraviolet-visible spectroscopy (UV-vis) 55 Chapter 4. Results 56 4.1 XRD patterns of spray pyrolysis derived β-TCP and BG powders 56 4.2 SEM images and particle size distribution of spray pyrolysis derived β-TCP and BG powders 57 4.3 XRD patterns of spray drying derived β-TCP/BG granulation powders 60 4.4 FT-IR spectra of spray drying derived β-TCP/BG granulation powders 61 4.5 Photograph and diffuse reflectance spectra of spray drying derived β-TCP/BG granulation powders 62 4.6 SEM images and particle size distribution of spray drying derived β-TCP/BG granulation powders 64 4.7 Specific surface areas of spray drying derived β-TCP/BG granulation powders 68 4.8 pH change of spray drying derived β-TCP/BG granulation powders 69 4.9 Cell viability test of spray drying derived β-TCP/BG granulation powders 70 Chapter 5. Discussion 72 5.1 The particle shape difference between β-TCP and BG by spray pyrolysis 72 5.2 Color change of spray drying derived β-TCP/BG granulation powders after calcination 74 5.3 pH change of spray drying derived β-TCP/BG granulation powders 79 Chapter 6. Conclusion 80 Chapter 7. Future works 81 References 82

[1] L. L. Hench, Bioceramics: From Concept to Clinic, Journal of American Ceramics Society, 74[7] (1991) 1487-510.
[2] H. Shegarfi, O. Reikeras, Bone transplantation and immune response, Journal of Orthopaedic Surgery, 17 (2009) 206-211.
[3] A.R. Amini, C.T. Laurencin, S.P. Nukavarapu, Bone Tissue Engineering: Recent Advances and Challenges, Critical Reviews in Biomedical Engineering, 40 (2012) 363-408.
[4] B. Baroli, “From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges,” Journal of Pharmaceutical Sciences, 98 (2009) 1317–1375.
[5] T. Sozen, L. Ozisik, N. Çalik Başaran, An overview and management of osteoporosis, European Journal of Rheumatology, 4 (2017) 46-56.
[6] A. ElAlfy, N. Palaschuk, D. El-Bassiouny, J. Wilson, O. Weber, Scoping the Evolution of Corporate Social Responsibility (CSR) Research in the Sustainable Development Goals (SDGs) Era, Sustainability, 12 (2020) 5544.
[7] E. Dorre, H.J.S-V. Hubner. 329 Alumina : processing, properties, and applications. (Book), 1984.
[8] F. Chen, Y.-R. Wu, J.-M. Wu, H. Zhu, S. Chen, S.-B. Hua, Z.-X. He, C.-Y. Liu, J. Xiao, Y.-S. Shi, Preparation and characterization of ZrO2-Al2O3 bioceramics by stereolithography technology for dental restorations, Additive Manufacturing, 44 (2021) 102055.
[9] B. Cales, Y. Stefani, C. Olagnon, G. Fantozzi, Mechanical characterization of a zirconia ceramic used as implant material. In Bioceramics, Vol. 6, pp. 259–264.
[10] L. Ji, G. Jell, Y. Dong, J.R. Jones, M.M. Stevens, Template synthesis of ordered macroporous hydroxyapatite bioceramics, Chemical Communications, 47 (2011) 9048-9050.
[11] J.R. Jones, Reprint of: Review of bioactive glass: From Hench to hybrids, Acta Biomaterialia, 23 (2015) S53-S82.
[12] L.L. Hench, R.J. Splinter, W. Allen, Bonding mechanisms at the interface of ceramic prosthetic materials, Journal of Biomedical Materials Research, 5(6) (1971) 117-141.
[13] N. Eliaz, N. Metoki, Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications, Materials, 10 (2017) 334.
[14] R. Murugan, S. Ramakrishna, Development of nanocomposites for bone grafting, Composites Science and Technology, 65 (2005) 2385–2406.
[15] D.S. Gomes, A.M.C. Santos, G.A. Neves, R.R. Menezes, A brief review on hydroxyapatite production and use in biomedicine, Ceramica, 65 (2019) 282-302.
[16] P. Eggli, W. Müller, R. Schenk, Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bone ingrowth and implant substitution, Journal of Clinical Orthopaedics and Related Research, 232 (1988) 127-138.
[17] M. Bohner, B.L.G. Santoni, N. Döbelin, β-tricalcium phosphate for bone substitution: Synthesis and properties, Acta Biomaterialia, 113 (2020) 23-41.
[18] P.-Y. Hsu, H.-C. Kuo, M.-L. Syu, W.-H. Tuan, P.-L. Lai, A head-to-head comparison of the degradation rate of resorbable bioceramics, Materials Science & Engineering C, 106 (2020) 110175.
[19] H.-Y. Lin, Y.-K. Huang, P.-Y. Hsu, W.-H. Tuan, M. Naito, Sintering of degradable bone substitutes at room temperature, Ceramics International, 47 (2021) 21714-21720.
[20] E.U. Kart, “A NOVEL METHOD TO SYNTHESIS OF CALCIUM SULPHATE ANHYDRITE SELF-DOPED WITH SiO2 FROM RED MUD AS A BIOCERAMIC, Ceramics-Silikáty, 65 (2021) 244-353.
[21] F. Xin, C. Jian, R. Jianming, Z. Zhongcheng, Z. Jianpeng, Synthesis and degradation properties of β-TCP/BG porous composite materials, Bulletin of Materials Science, 34-2 (2011) 357-364.
[22] B. Spirandeli, R. Ribas, S. Amaral, E. Martins, E. Esposito, L. Vasconcellos, T. Campos, G. Thim, E.J.M.S. Trichês, E. C, Incorporation of 45S5 bioglass via sol-gel in β-TCP scaffolds: Bioactivity and antimicrobial activity evaluation, 131 (2021) 112453.
[23] A. Sosnik, K.P. Seremeta, Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers, Advances in Colloid and Interface Science, 223 (2015) 40-54.
[24] J. Chen, H. Yang, C.-M. Xu, J.-G. Cheng, Y.-W.J.P.T. Lu, Preparation of ZrO2 microspheres by spray granulation, 385 (2021) 234-241.
[25] L.G. Chen, Y.H. Huang, Y.-J. Chou, Preparation and characterization of spray‐dried granulated bioactive glass micron spheres, 18 (2021) 1743-1750.
[26] Y.-J. Chou, H.S. Ningsih, S.-J. Shih, Preparation, characterization and investigation of antibacterial silver-zinc co-doped β-tricalcium phosphate by spray pyrolysis, Ceramics International, 46 (2020) 16708-16715.
[27] F.F. Bakare, Y.-J. Chou, Y.-H. Huang, A.H. Tesfay, T. Moriga, S.-J. Shih, Correlation of Morphology and In-Vitro Degradation Behavior of Spray Pyrolyzed Bioactive Glasses, Materials, 12 (2019) 3703.
[28] D. Janackovic, V. Jokanovic, L. Kostic-Gvozdenovic, S. Zec, D. Uskokovic, Synthesis and formation mechanism of submicrometre spherical cordierite powders by ultrasonic spray pyrolysis, Journal of Materials Science, 32 (1997) 163–168.
[29] G.L. Messing, S.-C. Zhang, G.V. Jayanthi, Ceramic Powder Synthesis by Spray Pyrolysis, Journal of American Ceramic Society, 76 [11] (1993) 2707–2726.
[30] H.J. Haugen, S.P. Lyngstadaas, F. Rossi, G. Perale, Bone grafts: which is the ideal biomaterial?, Journal of Clinical Periodontology, 46-21 (2019) 92-102.
[31] H.-S. Sohn, J.-K. Oh, Review of bone graft and bone substitutes with an emphasis on fracture surgeries, Biomaterials research, 23-9 (2019).
[32] C. Ohtsuki, M. Kamitakahara, T. Miyazaki, Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration, Journal of The Royal Society Interface, 6 (2009) S349-S360.
[33] W.H. Gitzen, Alumina as a Ceramic Material, American Ceramic Society, 17, 1970.
[34] R.E. Newnham, Z. Kristallogr. Refinement of the α-Al2O3, Ti2O3, V2O3 and Cr2O3 structures, Zeitschrift für Kristallographie, 117, 2-3 (1962) 235-237.
[35] V.G. Tsirelson, M.Yu. Antipin, R.G. Gerr, R.P. Ozerov, Yu.T. Struchkov, Ruby structure peculiarities derived from X-ray data. Localization of chromium atoms and electron deformation density, 87-2 (1985) 425-433.
[36] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, Journal of Applied Crystallography, 44 (2011) 1272–1276.
[37] H.R. Maier, N. Stark, A. Krauth, Reliability of ceramic–metallic hip joints based on strength analysis, proof, and structural testing, 1980
[38] Z. Özkurt, E. Kazazoğlu, Zirconia Dental Implants: A Literature Review, Journal of Oral Implantology, 37(3) (2011) 367-376.
[39] D. Lee, J.-S. Ryu, M. Shimono, K.-W. Lee, J.-M. Lee, H.-S. Jung, Differential Healing Patterns of Mucosal Seal on Zirconia and Titanium Implant, frontiers in Physiology, 10 (2019) 796.
[40] J. Park, Bioceramics Properties, chracterizations, and Application, Zirconium Oxides (Zirconia), 2008.
[41] W. Burger, G. Willmann, Advantages and risks of zirconia ceramics in biomedical applications, 1993
[42] Y. Ji, X.D. Zhang, X.C. Wang, Z.C. Che, X.M. Yu, H.Z. Yang, ZIRCONIA BIOCERAMICS AS ALL-CERAMICS CROWNS MATERIAL: A REVIEW, Reviews on Advanced Materials Science, 34 (2013) 72-78.
[43] J. Biggemann, D. Köllner, S. Simon, P. Heik, P. Hoffmann, T. Fey, Porous Functional Graded Bioceramics with Integrated Interface Textures, 4 (2021) 681-695.
[44] F. Zhang, J. Chang, J. Lu, K. Lin, C. Ning, Bioinspired structure of bioceramics for bone regeneration in load-bearing sites, Acta Biomaterialia, 3 (2007) 896-904.
[45] T.M. Freyman, I.V. Yannas, L.J. Gibson, Cellular materials as porous scaffolds for tissue engineering, Progress in Materials Science, 46 (2001) 273-282.
[46] D.-M. Liu, Influence of Porosity and Pore Size on the Compressive Strength of Porous Hydroxyapatite Ceramic, Ceramics International, 23 (1997) 135-139.
[47] M. Bohner, F. Baumgart, Theoretical model to determine the effects of geometrical factors on the resorption of calcium phosphate bone substitutes, Biomaterials, 25 (2004) 3569-3582.
[48] C. Joāo, R. Almeida, J. Silva, J. Borges, A simple sol-gel route to the construction of hydroxyapatite inverted colloidal crystals for bone tissue engineering, Materials Letters, 185 (2016) 407-410.
[49] C. Kim, J.W. Lee, J.H. Heo, C. Park, D.-H. Kim, G.S. Yi, H.C. Kang, H.S. Jung, H. Shin, J.H. Lee, Natural bone-mimicking nanoporeincorporated hydroxyapatite scaffolds for enhanced bone tissue regeneration, Biomaterials Research, 26-7 (2022).
[50] G.I.N. Waterhouse, M.R. Waterland, Opal and inverse opal photonic crystals: Fabrication and characterization, Polyhedron, 26 (2007) 356-368.
[51] V.P. Shrivastava, S. Sivakumar, J. Kumar, Green Color Purification in Tb3+ Ions through Silica Inverse Opal Heterostructure, ACS Applied Materials & Interfaces, 7 (2015) 11890-11899.
[52] L. Ji, G. Jell, Y. Dong, J. R. Jones, M.M. Stevens, Template synthesis of ordered macroporous hydroxyapatite bioceramics, Chemical Communications, 47 (2011) 9048-9050.
[53] Y.S. Zhang, C. Zhu, Y. Xia, Inverse Opal Scaffolds and Their Biomedical Applications, Advanced Materials, 29 (2017) 1701115.
[54] H. Yan, K. Zhang, C.F. Blanford, L.F. Francis, A. Stein, In Vitro Hydroxycarbonate Apatite Mineralization of CaO-SiO2 Sol-Gel Glasses with a Three-Dimensionally Ordered Macroporous Structure, Chemistry of Materials, 13 (2001) 1374-1382.
[55] A. Stein, R.C. Schroden, Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond, Current Opinion in Solid State and Materials Science, 5 (2001) 553-564.
[56] S.B. Hendricks et al., Zeitschrift für Kristallographie - Crystalline Materials, 81 (1932) 1930.
[57] S. Samavedi, A.R. Whittington, A.S. Goldstein, Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior, Acta Biomaterialia, 9 (2013) 8037–8045.
[58] G. Karunakaran, E.-B. Cho, G.S. Kumar, E. Kolesnikov, G. Janarthanan, M.M. Pillai, S. Rajendran, S. Boobalan, K. Govindaraj Sudha, M.P. Rajeshkumar, Mesoporous Mg-doped hydroxyapatite nanorods prepared from bio-waste blue mussel shells for implant applications, Ceramics International, 46 (2020) 28514-28527.
[59] L.L. Hench, The story of BioglassⓇ, Journal of Materials Science: Materials in Medicine, 17 (2006) 967-978.
[60] T.R. Utari, B.A. Paryontri, A. Muzayyana, The Effect of Novamin on Surface Roughness Dental Enamel After Debonding Orthodontic Bracket, 33 (2020) 254-260.
[61] J.S. Earl, R.K. Leary, K.H. Muller, R.M. Langford, D.C. Greenspan, Physical and chemical characterization of dentin surface, following treatment with NovaMin technology, Journal of clinical dentistry, 22(3) (2011) 62-7.
[62] M.D. Graef, M.E. McHenry, Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry, ‎ Cambridge University Press; 2nd edition, (2012).
[63] E. Vranic, AMORPHOUS PHARMACEUTICAL SOLIDS, Bosnian Journal of Basic medical Sciences, 4(3) (2004) 35-39.
[64] J.E. Jones, On the determination of molecular fields.—I. From the variation of the viscosity of a gas with temperature, Proceedings of the Royal Society A, 22 (1921) 302.
[65] E. Axinte, Glasses as engineering materials: A review, Material & Design, 32 (2011) 1717-1732.
[66] A. Goel, S. Kapoor, R.R. Rajagopal, M.J. Pascual, H.-W. Kim, J.M.F. Ferreira, Alkali-free bioactive glasses for bone tissue engineering: A preliminary investigation, Acta Biomaterialia, 8 (2012) 361-372.
[67] Y.-J. Chou, C.-W. Hsiao, N.-T. Tsou, M.-H. Wu, S.-J. Shih, Preparation and in Vitro Bioactivity of Micron-sized Bioactive Glass Particles Using Spray Drying Method, applied sciences, 9 (2019) 19.
[68] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica, A 32 (1976) 751–767.
[69] B.A. Aswathy, P.P. Rao, V.G. Suchithra, A.K.V. Raj, New narrow orange-emitting phosphors in 1:2 B-site cation ordered Eu3+ doped triple perovskite Ba3CaNb2O9, Journal of Materials Science: Materials in Electronics, 32 (2021) 12671-12680.
[70] R. Ali, M. Yashima, Space group and crystal structure of the Perovskite CaTiO3 from 296 to 1720 K, Journal of Solid State Chemistry, 178 (2005) 2867-2872.
[71] C. Liu, Z. Xia, M.S. Molokeev, Q. Liu, Synthesis, Crystal Structure, and Enhanced Luminescence of Garnet-Type Ca3Ga2Ge3O12:Cr3+ by Codoping Bi3+, Journal of American Ceramics Society, 98 (2015) 1870-1876.
[72] M. Mathew, L.W. Schroeder, B. Dickens, and W.E. Brown, The crystal structure of α-Ca3(PO4)2, Acta Crystallographica Section B, 33 (1977) 1325-1333.
[73] M. Yashima, A. Sakai, T. Kamiyama, A. Hoshikawa, Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction, Journal of Solid State Chemistry, 175 (2003) 272-277.
[74] L. Pauling, “THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS’’, Journal of the American Chemical Society, 51 (1929) 1010.
[75] E.E. Jay, E.M. Michie, D. Parfitt, M.J.D. Rushton, S.K. Fong, P.M. Mallinson, B.L. Metcalfe, R.W. Grimes, Predicted energies and structures of β-Ca3(PO4)2, Journal of Solid State Chemistry, 183 (2010) 2261-2267.
[76] B. Dickens, L.W. Schroeder, W.E. Brown, Crystallographic Studies of the Role of Mg as a Stabilizing Impurity in β-Ca3(PO4)2, I. The Crystal Structure of Pure β-Ca3(PO4)2, Journal of Solid State Chemistry, 10 (1974) 232-248.
[77] S.L. Dong, H.H. Lina, T. Yu, Q.Y. Zhang, Near-infrared quantum-cutting luminescence and energy transfer properties of Ca3(PO4)2:Tm3+, Ce3+ phosphors, Journal of Applied Physics, 116 (2014) 023517.
[78] K. Li, D. Chen, J. Xu, R. Zhang, Y. Yu, Y. Wang, Phase transition and multicolor luminescence of Eu2+/Mn2+-activated Ca3(PO4)2 phosphors, Materials Research Bulletin, 49 (2014) 677-681.
[79] W.-F. Ho, H.-C. Hsu, S.-K. Hsu, C.-W. Hung, S.-C. Wu, Calcium phosphate bioceramics synthesized from eggshell powders through a solid state reaction, Ceramic International, 39 (2013) 6467-6473.
[80] M. Jamil, B. Elouatli, H. Khallok, A. Elouahli, E. Gourri, M. Ezzahmouly, F. Abida, Z. Hatim, Silicon substituted hydroxyapatite: Preparation with Solid-State Reaction, Characterization and Dissolution Properties, Journal of Materials and Environmental Sciences, 9 (2018) 2322-2327.
[81] M. Zielecka, E. Bujnowska, K. Suwala, M. Wenda, Sol-Gel-Derived Silicon-Containing Hybrids, 2017.
[82] M.V. Landau, “2.3.4 Sol–Gel Process,” Part 2. Preparation of Solid Catalysts, 2.3. Bulk Catalysts and Supports, 2008.
[83] K. Saranya, M. Kowshik, S.R. Ramanan, Synthesis of hydroxyapatite nanopowders by sol–gel emulsion technique, Bulletin of Materials Science, 34 (2011) 1749-1753.
[84] T. Windarti, A. Darmawan, A. Marliana, Synthesis of β-TCP by sol-gel method: variation of Ca/P molar ratio BTCP sol gel, IOP Conference Series: Materials Science and Engineering, 509 (2019) 012147.
[85] K. Zheng, A.R. Boccaccini, Sol-gel processing of bioactive glass nanoparticles: A review, Advanced in Colloid and Interface Science, 249 (2017) 363-373.
[86] E. Mounika, P. Sivamma, R. Snehitha, Atomization techniques in spray drying: A Review, The Pharma Innovation, 10 (2021) 454-461.
[87] I.M. Krieger, T.J. Dougherty, Trans.Soc.Theol., 3 (1959) 137-152.
[88] J. Chen, H. Yang, C.-M. Xu, J.-G. Cheng, Y.-W. Lu, Preparation of ZrO2 microspheres by spray granulation, Powder Technology, 385 (2021) 234-241.
[89] P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura, T. Yamamuro, Apatite formation induced by silica gel in a simulated body fluid, Journal of the American Ceramic Society, 75 (1992) 2094-2097.
[90] T. Mosmann, Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays, Journal of Immunological Methods, 65 (1983) 55-63.
[91] Y. Liu, D.A. Peterson, H. Kimura, D. Schubert, Mechanism of Cellular 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) Reduction, Journal of Neurochemistry, 69 (1997) 581-593.
[92] S.E. Winikoff, H.J. Zeh, R. DeMarco, M.T. Lotze, Chapter 29 Cytolytic Assay, Measuring Immunity, 2005.
[93] S.D. Mahajan, W.-C. Law, R. Aalinkeel, J. Reynolds, B.B. Nair, K.-T. Yong, I. Roy, P.N. Prasad, S.A. Schwartz, Nanoparticle-Mediated Targeted Delivery of Antiretrovirals to the Brain, Method in Enzymology, 509 (2012).
[94] F. Bouchart, O. Vidal, J.-M. Lacroix, C. Spriet, S. Chamary, A. Brutel, J.-C. Hornez, 3D printed bioceramic for phage therapy against bone nosocomial infections, Materials Science and Engineering: C, 111 (2020) 110840.
[95] F.F. Bakare, Y.-J. Chou, Y.-H. Huang, A.H. Tesfay, T. Moriga, S.-J. Shih, Correlation of Morphology and In-Vitro Degradation Behavior of Spray Pyrolyzed Bioactive Glasses, materials, 12 (2019) 3703.
[96] S. Brunauer, P.H. Emmett, E. Telleer, Adsorption of Gases in Multimolecular Layers, 60 (1938) 309.
[97] C.N.R. Rao, ULTRA-VIOLET AND VISIBLE SPECTROSCOPY CHEMICAL APPLICATION, Third Edition, Butterworth, 1975.
[98] U.K. Nahar, B. Shovon, D.R. Chandra, P.S Chandra, B. Shukanta, Y.M. Muhammed, M.D.S. Islam, Characterization of Beta-Tricalcium Phosphate (β- TCP) Produced at Different Process Conditions, Journal of Bioengineering & Biomedical Science, 7 (2017) 1000221.
[99] D. Bellucci, V. Cannillo, A. Sola, Coefficient of thermal expansion of bioactive glasses: Available literature data and analytical equation estimates, Ceramics International, 37 (2011) 2963-2972.
[100] S. Farrokhpay, A review of polymeric dispersant stabilisation of titania pigment, Advances in Colloid and Interface Science, 151 (2009) 24–32.
[101] L. Pauling, “THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY,” Journal of The American Chemical Society, 54 (1932) 3570-3582.
[102] P. W. Atkins, D. F. Shriver, “Shriver & Atkins Inorganic Chemistry,” Oxford University Press, (2006)
[103] H.-K. Park, B.-S. Kong, E.-S. Oh, “Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries,” Electrochemistry Communications, 13 (2011) 1051–1053.
[104] E.R. Essien, L.A. Adams, R.O. Shaibu, Sol-gel quaternary bioactive glass scaffold for bone repair, Materials Science: An Indian Journal, 9 (2013) 372-377.

QR CODE