簡易檢索 / 詳目顯示

研究生: 劉鎮維
Zhen-Wei Liu
論文名稱: ReS2-xSex (x = 0, 1, 2) 之晶體成長與光電導特性研究
Crystal growth and photoconductive characteristics of ReS2-xSex (x = 0, 1, 2)
指導教授: 李奎毅
Kuei-Yi Lee
趙良君
Liang-Chiun Chao
口試委員: 李奎毅
Kuei-Yi Lee
趙良君
Liang-Chiun Chao
何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 71
中文關鍵詞: 二硫化錸二硒化錸光響應度光電導率化學氣相傳導法
外文關鍵詞: Rhenium disulfide, Rhenium diselenide, Photoconductivity, Photoresponsivity, Chemical vapor transport
相關次數: 點閱:315下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用化學氣相傳導法合成層狀過渡金屬硫化物ReS2-xSex (x = 0, 1, 2),並將其製作成光感測元件,透過化學氣相傳導法能夠合成出不同比例之 ReS2-xSex,使用拉曼光譜儀分析其晶格振動模態變化以及光激發螢光光譜儀觀察其能隙變化,X光光電子能譜儀以及X光能量散射光譜儀測定成分組成,結果顯示ReS2-xSex可以有效地利用莫耳數比計算控制其比例。首先將ReS2-xSex製作成金屬-半導體-金屬光感測器元件,進行電性量測,確保樣品為歐姆接觸,再來使用405、532、633以及808 nm四種不同波長的雷射量測光電流,不同波長造成的光子能量所產生的光電流量與樣品本身的吸光度與吸收效率有關,在這四種雷射中,波長越短所產生的光響應度反應最佳,而波長越長的光響應度反應則越差,由於能隙的不同,ReSe2 (1.29 eV) 的能隙較ReS2 (1.51 eV) 小,其光吸收度較佳,使得在光響應度上擁有較佳的表現,而ReSSe受限於其合金結構所導致的載子散射,造成其光電導率大幅度降低,為三種組成中最低。歸一化光響應度與載子遷移率、載子活期和量子轉換效率有關,從實驗中可得知載子活期為影響歸一化光響應度的最主要因素。


    In this thesis, we used chemical vapor transport method to synthesize layered transition metal dichalcogenides ReS2-xSex (x = 0, 1, 2) single crystals. The lattice vibration of ReS2-xSex was investigated by Raman spectroscopy. The band gap structure was demonstrated by photoluminescence (PL). The composition of ReS2-xSex was confirmed by X-ray photoelectron spectroscopy (XPS) and Energy dispersive X-ray spectroscopy (EDX). The results of XPS and EDX showed that the composition of ReS2-xSex could be tunable by calculating the mole number ratio of the starting material. We fabricated ReS2-xSex into metal-semiconductor-metal photodetector device and demonstrated photocurrent properties under different wavelength of laser sources, which were 405, 532, 633 and 808 nm. Different photon energy and absorbance could be generated from different laser source. Within 4 lasers, the shorter wavelength exhibited better photoresponse than the longer ones. ReSe2 showed greater light absorption and photoresponse due to the smaller energy gap than ReS2. ReSSe demonstrated relatively low photoconductivity and photoresponsivity. This could be caused by alloying-induced carrier scattering. We discovered that ReS2-xSex has the best photoresponse under the illumination of 405 nm laser source. From the results, we inferred that the carrier lifetime was the most important factor affecting the normalized photoresponsivity.

    中文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1 二維半導體材料 1 1.2 過渡金屬硫化物 2 1.2.1二硫化錸及二硒化錸 4 1.2.2 ReS2-xSex 4 1.2.3合成與製備 6 1.3 光電導 7 1.3.1光電效應 8 1.3.2光電導效應 9 1.3.3氧敏化機制 10 1.4 光電導率 11 1.5 量子效率與光響應度 12 1.6 歸一化光電流增益 13 1.7 研究動機與背景 14 第二章 晶體成長及實驗方式 15 2.1 實驗流程圖 15 2.2 晶體成長方式介紹 16 2.3 晶體成長設備介紹 18 2.3.1真空系統 18 2.3.2高溫長晶爐 19 2.4 單晶成長 20 2.5 樣本製作與量測 22 2.6 儀器介紹 23 2.6.1拉曼光譜儀 23 2.6.2光激發螢光光譜儀 24 2.6.3 X射線光電子能譜儀 26 2.6.4 X射線能量散佈分析儀 27 2.6.5穿透式電子顯微鏡 29 2.6.6掃描式電子顯微鏡 30 2.6.7光電導特性量測系統 31 第三章 結果與討論 33 3.1 成份分析 33 3.1.1拉曼光譜圖分析 33 3.1.2光激發螢光光譜圖分析 35 3.1.3 X射線光電子能譜分析 36 3.1.4 X射線能量散佈圖 38 3.2 表面樣貌分析 40 3.3.1掃描式電子顯微鏡影像分析 40 3.3.2穿透式電子顯微鏡影像分析 41 3.3 光感測器 43 3.3.1電導特性 43 3.3.2光電流特性 45 3.4 光感測器之特性分析 50 3.4.1光電導率 50 3.4.2歸一化光響應度 53 3.4.3 ReS2-xSex光響應度分析 56 3.4.4光電流及吸光度 58 第四章 結論 59 參考文獻 60

    [1] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene,” Solid State Commun., vol. 146, pp. 351-355, 2008.
    [2] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photon., vol. 4, pp. 611-622, 2010.
    [3] F. Schwierz, “Graphene transistors,” Nature Nanotech., vol. 5, pp. 487-496, 2010.
    [4] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colomba, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett., vol. 9, pp. 4359-4363, 2009.
    [5] V. M. Pereira and A. H. C. Neto, “Strain engineering of graphene's electronic structure,” Phys. Rev. Lett., vol. 103, 2009.
    [6] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, “Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties,” Nano Lett., vol. 9, pp. 1752-1758, 2009.
    [7] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater., vol. 22, pp. 3906-3924, 2010.
    [8] W. Jaegermann and H. Tributsch, “Interfacial properties of semiconducting transition metal chalcogenides,” Progress Surf. Sci., vol. 29, pp. 1-167, 1988.
    [9] W. J. Yu, Y. Liu, H. Zhou, A. Lin, Z. Li, Y. Huang, and X. Duan, “Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials,” Nature Nanotech., vol. 8, pp. 952-958, 2013.
    [10] H. Li, J. Wu, Z. Yin, and H. Zhang, “Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets,” Acc. Chem. Res., vol. 47, pp. 1067-1075, 2014.
    [11] N. Liu, P. Kim, J. H. Kim, J. H. Ye, S. Kim, and C. J. Lee, “Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation,” ACS Nano., vol. 8, pp. 6902-6910, 2014.
    [12] G. Prasad and O. N. Srivastava, “The high-efficiency (17.1%) WSe2 photo-electrochemical solar cell,” J. Phys. D: Appl. Phys., vol. 21, pp. 1028-1030, 1988.
    [13] S. Min and G. Lu, “Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets-the role of graphene,” J. Phys. Chem. C., vol. 116, pp. 25415-25424, 2012.
    [14] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “Emerging photoluminescence in monolayer MoS2,” Nano Lett., vol. 10, pp. 1271-1275, 2010.
    [15] C. H. Ho, “Optical study of the structural change in ReS2 single crystals using polarized thermoreflectance spectroscopy,” Opt. Express., vol. 13, pp. 8-19, 2005.
    [16] H. J. Lamfers, A. Meetsma, G. A. Wiegers, and J. L. de Boer, “The crystal structure of some rhenium and technetium dichalcogenides,” J. Alloys Compd., vol. 241, pp. 34-39, 1996.
    [17] M. Hafeez, L. Gan, H. Li, Y. Ma, and T. Zhai, “Large-area bilayer ReS2 film/multilayer ReS2 flakes synthesized by chemical vapor deposition for high performance photodetectors,” Adv. Funct. Mater., vol. 26, pp. 4551–4560, 2016.
    [18] B. Jariwala, D. Voiry, A. Jindal, B. A. Chalke, R. Bapat, A. Thamizhavel, M. Chhowalla, M. Deshmukh, and A. Bhattacharya, “Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals,” Chem. Mater., vol. 28, pp. 3352-3359, 2016.
    [19] S. Yang, S. Tongay, Q. Yue, Y. Li, B. Li, and F. Lu, "High-performance few-layer Mo-doped ReSe2 nanosheet photodetectors," Sci. Rep., vol. 4, pp. 5442, 2014.
    [20] B. L. Wheeler, J. K. Leland, and A. J. Bard, “Semiconductor electrodes LX. photoelectrochemistry of p-rhenium disulfide and p-rhenium diselenide in aqueous solutions,” J. Electrochem. Soc., vol. 133, issue. 2, pp. 358-361, 1986.
    [21] F. Qi, X. Wang, B. Zheng, Y. Chen, B. Yu, J. Zhou, J. He, P. Li, W. Zhang, and Y. Li, "Self-assembled chrysanthemum-like microspheres constructed by few-layer ReSe2 nanosheets as a highly efficient and stable electrocatalyst for hydrogen evolution reaction," Electrochim. Acta, vol. 224, pp. 593-599, 2017.
    [22] C. H. Ho, Y. S. Huang, P. C. Liao, and K. K. Tiong, "Crystal structure and band-edge transitions of ReS2−xSex layered compounds," J. Phys. Chem. Solids, vol. 60, pp. 1797-1804, 1999.
    [23] J. V. Marzik, R. Kershaw, K. Dwight, and A. Wold, "Photoelectronic properties of ReS2 and ReSe2 single crystals," J. Solid State Chem., vol. 51, pp. 170-175, 1984.
    [24] E. Liu, M. Long, J. Zeng, W. Luo, Y. Wang, Y. Pan, W. Zhou, B. Wang, W. Hu, Z. Ni, Y. You, X. Zhang, S. Qin, Y. Shi, K. Watanabe, T. Taniguchi, H. Yuan, H. Y. Hwang, Y. Cui, F. Miao, and D. Xing, "High responsivity phototransistors based on few‐layer ReS2 for weak signal detection," Adv. Funct. Mater., vol. 26, pp. 1938-1944, 2016.
    [25] S. H. Jo, H. Y. Park, D. H. Kang, J. Shim, J. Jeon, S. Choi, M. Kim, Y. Park, J. Lee, Y. J. Song, S. Lee, and J. H. Park, "Broad detection range rhenium diselenide photodetector enhanced by (3‐aminopropyl) triethoxysilane and triphenylphosphine treatment," Adv. Mater., vol. 28, pp. 6711-6718, 2016.
    [26] A. J. Waldau, M. C. L. Steiner, G. J. Waldau, and E. Bucher, “WS2 thin films prepared by sulphurization,” Appl. Surf. Sci., vol. 70-71, pp. 731-736, 1993.
    [27] Q. H. Wang, K. K. Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature Nanotech., vol. 7, pp. 699-712, 2012.
    [28] A. K. Rai, R. S. Bhattacharya, J. S. Zabinski, and K. Miyoshi, “A comparison of the wear life of as-deposited and ion-irradiated WS2 coatings,” Surf. Coat. Technol., vol. 92, pp. 120-128, 1997.
    [29] R. Vaidya, M. Dave, S. S. Patel, S. G. Patel, and A. R. Jani, “Growth of molybdenum disulphide using iodine as transport material,” Pramana., vol. 63, pp. 611-616, 2004.
    [30] M. Binnewies, R. Glaum, M. Schmidt, and P. Schmidt, “Chemical vapor transport reactions - a historical review,” Z. Anorg. Allg. Chem., vol. 639, pp. 219-229, 2013.
    [31] A. Ubaldini, J. Jacimovic, N. Ubrig, and E. Giannini, “Chloride-driven chemical vapor transport method for crystal growth of transition metal dichalcogenides,” Cryst. Growth Des., vol. 13, pp. 4453-4459, 2013.
    [32] M. M. Furchi, D. K. Polyushkin, A. Pospischil, and T. Mueller, “Mechanisms of photoconductivity in atomically thin MoS2,” Nano Lett., vol. 14, pp. 6165-6170, 2014.
    [33] W. Zhu, T. Low, Y. H. Lee, H. Wang, D. B. Farmer, J. Kong, F. Xia, and P. Avouris, “Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition,” Nat. Commun., vol. 5, pp. 3087-1-3087-8, 2014.
    [34] R. S. Chen, T. H. Yang, H. Y. Chen, L. C. Chen, K. H. Chen, Y. J. Yang, C. H. Su, and C. R. Lin, “Photoconduction mechanism of oxygen sensitization in InN nanowires,” Nanotechnology, vol. 22, pp. 425702, 2011.
    [35] M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. C. Gomez, “Photocurrent generation with two-dimensional van der Waals semiconductors,” Chem. Soc. Rev., vol. 44, pp. 3691-3718, 2015.
    [36] M. M. Furchi, D. K. Polyushkin, A. Pospischil, and T. Mueller, “Mechanisms of photoconductivity in atomically thin MoS2,” Nano Lett., vol. 14, pp. 6165-6170, 2014.
    [37] J. Dong and D. A. Drabold, "Atomistic structure of band-tail states in amorphous silicon," Phys. Rev. Lett., vol. 80, pp. 1928-1931, 1998.
    [38] W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, "Recent development of two-dimensional transition metal dichalcogenides and their applications," Mater. Today, vol. 20, pp. 116-130, 2017.
    [39] J. Shim, A. Oh, D. H. Kang, S. Oh, S. K. Jang, J. Jeon, M. H. Jeon, M. Kim, C. Choi, J. Lee, S. Lee, G. Y. Yeom, Y. J. Song, and J. H. Park, "High‐performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment," Adv. Mater., vol. 28, pp. 6985-6992, 2016.
    [40] Y. Feng, W. Zhou, Y. Wang, J. Zhou, E. Liu, Y. Fu, Z. Ni, X. Wu, H. Yuan, F. Miao, B. Wang, X. Wan, and D. Xing, "Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry," Phys. Rev. B, vol. 92, pp. 054110, 2015.
    [41] D. A. Chenet, O. B. Aslan, P. Y. Huang, C. Fan, A. M. van der Zande, T. F. Heinz, and J. C. Hone, "In-plane anisotropy in mono- and few-layer ReS2 probed by Raman spectroscopy and scanning transmission electron microscopy," Nano Lett., vol. 15, pp. 5667-5672, 2015.
    [42] F. Liu, S. Zheng, A. Chaturvedi, V. Zólyomi, J. Zhou, Q. Fu, C. Zhu, P. Yu, Q. Zeng, N. D. Drummond, H. J. Fan, C. Kloc, V. I. Fal'ko, X. He, and Z. Liu, "Optoelectronic properties of atomically thin ReSSe with weak interlayer coupling," Nanoscale, vol. 8, pp. 5826-5834, 2016.
    [43] W. Wen, Y. Zhu, X. Liu, H. P. Hsu, Z. Fei, Y. Chen, X. Wang, M. Zhang, K. H. Lin, F. S. Huang, Y. P. Wang, Y. S. Huang, C. H. Ho, P. H. Tan, C. Jin, and L. Xie, "Anisotropic spectroscopy and electrical properties of 2D ReS2(1–x)Se2x alloys with distorted 1T structure," Small, vol. 13, p. 1603788, 2017.
    [44] I. Balberg and R. Naidis, "Sensitization of the minority-carrier lifetime in a photoconductor," Phys. Rev. B, vol. 57, pp. R6783-R6786, 1998.
    [45] Y. Cao, K. Cai, P. Hu, L. Zhao, T. Yan, W. Luo, X. Zhang, X. Wu, K. Wang, and H. Zheng, "Strong enhancement of photoresponsivity with shrinking the electrodes spacing in few layer GaSe photodetectors," Sci. Rep., vol. 5, pp. 8130, 2015.
    [46] H. Liu, B. Xu, J. M. Liu, J. Yin, F. Miao, C. G. Duanc, and X. G. Wana, “Highly efficient and ultrastable visible-light photocatalytic water splitting over ReS2,” Phys. Chem. Chem. Phys., vol. 18, pp. 14222-14227, 2016.

    QR CODE