簡易檢索 / 詳目顯示

研究生: Yeshitila
Yeshitila - Asteraye Tsigie
論文名稱: 利用蔗渣水解液培養Yarrowia lipolytica PO1g之生質在以生產脂肪酸甲基酯
Synthesis of Fatty Acid Methyl Esters From Yarrowia lipolytica PO1g Biomass Grown In Sugarcane Bagasse Hydrolysate
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: Suryadi Ismadji
Suryadi Ismadji
Setiyo Gunawan
Setiyo Gunawan
Warmadewanthi
Warmadewanthi
Ahmed Fazary
Ahmed Fazary
Truong Chi Thanh
Truong Chi Thanh
劉志成
Jhy-Chern Liu
王孟菊
Wang Meng Jiy
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 112
中文關鍵詞: 生質柴油脂肪酸甲基酯蔗渣水解液次臨界水中性脂質次臨界甲醇
外文關鍵詞: Sugarcane bagasse hydrolysate, Sub-critical water, Neutral lipid
相關次數: 點閱:232下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討以去毒素後之蔗渣水解液(DSCBH)作為介質以培養Yarrowia lipolytica Po1g生產油脂及生質柴油之可行性。以2.5%鹽酸水解蔗渣可得到最大之總醣含量(21.38 g/L),其中13.59 g/L為木糖、3.98 g/L is為葡萄糖、2.78 g/L為阿拉伯糖。利用中和可將5-羟甲基糠醛及糠醛之濃度分別減少21.31%及24.84%。以蛋白胨為氮源在DSCBH中培養Y. lipolytica Po1g可得到最大之生質濃度為11.42 g/L,若改以為氮源則最大生質濃度僅有6.49 g/L。以蛋白胨為氮源時,利用DSCBH為碳源所得生質濃度(11.42 g/L)比用D-葡萄糖(10.19 g/L)、D-木糖(9.89 g/L)及未去毒素之蔗渣水解液(5.88 g/L)為碳源所得生質濃度都要好。Y. lipolytica Po1g生長在以蛋白胨為氮源之DSCBH介質中時最大之脂質含量、脂質產量及脂質生產率分別為58.5%、6.68 g/L及1.76 g/L-day。
    將經次臨界水(SCW)處理及未經次臨界水處理後之Y. lipolytica Po1g以溶劑萃取出中性脂質決定其含量及其脂肪酸組成,並探討處理溫度(125, 150 or 175 oC)、含水量(20, 30 or 40 mL/g biomass)及時間(10, 20 or 30 min)對脂質產量之影響。結果顯示在175 oC、20 mL水及20 min條件下可得到最大中性脂質量(42.69 %, w/w)。未經SCW處理時最大中性脂質量只有23.21%。經及未經SCW處理所得脂質脂肪酸組成沒有顯著差異,但是在經SCW處理所得脂質中發現有長鍊脂肪酸。經SCW處理後所得中性脂質量可增加兩倍。
    Y. lipolytica Po1g之生質在沒有酸或鹼存在下直接與甲醇及水在次臨界狀態下(175 oC, 23 bar)反應。本研究所提出之方法可於合理的反應時間內得到高生質柴油產量。此方法應用於其他含大量脂肪酸及水之生質之可能性也一併加以討論。


    This study investigated the possibility of utilizing detoxified sugarcane bagasse hydrolysate (DSCBH) as the carbon source to culture Yarrowia lipolytica Po1g for microbial oil and biodiesel production. Sugarcane bagasse hydrolysis with 2.5% HCl resulted in maximum total sugar concentration (21.38 g/L) in which 13.59 g/L is xylose, 3.98 g/L is glucose, and 2.78 g/L is arabinose. Detoxification of SCBH by Ca(OH)2 neutralization reduced the concentration of 5-hydroxymethylfurfural and furfural by 21.31% and 24.84%, respectively. Growth of Y. lipolytica Po1g in DSCBH with peptone as the nitrogen source gave maximum biomass concentration (11.42 g/L) compared to NH4NO3 (6.49 g/L). With peptone as the nitrogen source, DSCBH resulted in better biomass concentration than D-glucose (10.19 g/L), D-Xylose (9.89 g/L) and NDSCBH (5.88 g/L). The maximum lipid content, lipid yield and lipid productivity of Yarrowia lipolytica Po1g grown in DSCBH and peptone was 58.5%, 6.68 g/L and 1.76 g/L-day, respectively.
    The amount of neutral lipids and fatty acid profiles in neutral lipids extracted from Y. lipolytica Po1g with and without subcritical water (SCW) pre-treatment were investigated. The effects of temperature (125, 150 or 175 oC), amount of water (20, 30 or 40 mL/g biomass) and time (10, 20 or 30 min) on lipid yield were studied. The results show that maximum neutral lipid (42.69 %, w/w) could be achieved at 175 oC using 20 mL water for 20 min. The maximum neutral lipid from unpretreated samples was 23.21%. No difference in fatty acid profiles was observed, but long chain fatty acids were observed in higher amount in SCW pretreated samples. SCW pretreatment increased biodiesel yield by two fold.
    Biomass of Y. lipolytica Po1g was reacted with methanol and water under subcritical condition (175 oC, 23 bar) without the presence of acid or base. The proposed method was able to give high biodiesel yield in reasonably short time. The possibility of using this method for biodiesel preparation from wet biomass with high acid and water contents as feedstock was discussed.

    TABLE OF CONTENTS CONTENTS PAGE COVER APPROVAL LETTER CHINESE ABSTRACT I ENGLISH ABSTRACT II ACKNOWLEDGEMENTS IV TABLE OF CONTENTS V LIST OF ABBREVIATIONS X LIST OF FIGURES XII LIST OF TABLES XIII CHAPTER ONE 1 Introduction 1 1.0. Background of the study 1 1.1. Objectives of the study 6 CHAPTER TWO 7 LITERATURE REVIEW 7 2.1. Oleaginous microorganisms 7 2.1.1. Introduction 7 2.1.2. Oil contents of some microorganisms 7 2.1.3. Lipids from yeasts 9 2.1.4. Yarrowia lipolytica 9 2.1.4.1. Introduction 9 2.1.4.2. Media for culturing Yarrowia lipolytica 10 2.1.4.3. Yarrowia lipolytica Strain: Po1g 11 2.1.5. Carbon sources for oleaginous microorganisms 12 2.2. Sugarcane bagasse 13 2.2.1. Composition of sugarcane bagasse 13 2.2.1.1. Cellulose 13 2.2.1.2. Hemicellulose 14 2.2.2. Pretreatment of sugarcane bagasse for hydrolysate production 15 2.2.2.1. Types of pretreatment methods on sugarcane bagasse 16 2.2.3. Detoxification of SCB Hydrolysate 16 2.3. Subcritical water 16 2.4. Biodiesel 17 2.4.1. Introduction 17 2.4.2. Feedstocks for biodiesel preparation 18 2.4.3. Preparation of biodiesel 21 2.4.3.1. Transesterification 21 2.4.3.1.1. Base catalyzed transesterification 22 2.4.3.1.2. Acid catalyzed transesterification 24 2.4.3.1.3. Enzyme catalyzed transesterification 24 2.4.3.1.4. Non-catalyzed transesterification 25 2.5. Experimental Design 26 CHAPTER THREE 27 EXPERIMENTAL SECTION 27 3.0. Apparatus and Chemicals 27 3.1. Methodology 27 3.1.1. Lipid production from Y. lipolytica PO1g grown in SCBH 27 3.1.1.1. SCBH Preparation 27 3.1.1.2. Detoxification of SCBH 29 3.1.1.3. Microorganism, Media Preparation, Precultivation and Cultivation 29 3.1.1.4. Biomass and Cell Concentration Determination 30 3.1.1.5. Total Sugar and Inhibitors Concentration Determination 30 3.1.1.6. Lipid Content and Fatty Acids Determination 31 3.1.2. Biodiesel preparation from Y. lipolytica PO1g biomass 32 3.1.2.1. Biomass pretreatment and sample preparation 32 3.1.2.2. Experimental design 33 3.1.2.3. Lipid content and fatty acids determination 34 3.1.2.4. Determination of FAMEs contents 34 3.1.3. Biodiesel production from wet Y. lipolytica Po1g biomass under subcritical conditions 36 3.1.3.1. Sample preparation from Y. lipolytica Po1g biomass 36 3.1.3.2. Experimental setup 36 3.1.3.3. Production of biodiesel from biomass 37 3.1.3.4. Qualitative analysis using thin layer chromatography (TLC) 39 3.1.3.5. Quantitative analysis using gas chromatography (GC) 39 3.1.3.6. Determination of FAMEs contents 39 CHAPTER FOUR 41 RESULTS AND DISCUSSION 41 4.1. Lipid production from Y. lipolytica PO1g grown in SCBH 41 4.1.1. Composition of SCBH before And after Neutralization with Ca(OH)2 41 4.1.2. Effect of nitrogen source on growth of Y. lipolytica Po1g in DSCBH Medium 44 4.1.3. Comparison of growth of Y. lipolytica Po1g in SCBH medium and other carbon sources 45 4.1.4. Lipid content of Y. lipolytica Po1g cells grew in DSCBH medium 49 4.1.5. Comparison of lipid production from Y. lipolytica strains in different media 53 4.2. Biodiesel production from Y. lipolytica Po1g biomass using SCW pretreatment 54 4.2.1. Lipid, wax and gum contents of Y. lipolytica Po1g 54 4.2.2. Effects of pretreatment parameters on composition of extract 56 4.2.3. Effect of temperature on the neutral lipid profiles of Y. lipolytica Po1g 57 4.2.4. Comparison of fatty acid composition of neutral lipids of Y. lipolytica Po1g with or without SCW pretreatment 61 4.2.5. FAMEs composition of untreated and SCW pretreated samples 63 4.3. Biodiesel production from Y. lipolytica Po1g biomass using subcritical methanol 65 4.3.1. Effect of amount of water 65 4.3.2. Effect of methanol amount 67 4.3.3. Effect of reaction time 69 4.3.4. Effect of adding sulfuric acid 70 4.3.5. FAMEs composition 72 CHAPTER FIVE 74 CONCLUSIONS AND FUTURE PROSPECTS 74 REFERENCES 76 APPENDIX A 90 APPENDIX B 91 CURRICULUM VITAE 92 COPY RIGHT

    Abreu, F.R., Alves, M.B., Macedo, C.C.S. 2005. New multi-phase catalytic systems based on tin compounds active for vegetable oil transesterification reaction J. Mol. Catal. A: Chem., 227, 263-267.
    Aggelis, G., Komaitis, M. 1999. Enhancement of single cell oil production by Yarrowia lipolytica growing in the presence of Teucrium polium L. aqueous extract. Biotechnol. Lett., 21(9), 747-749.
    Aggelis, S.P.I.C.M.K.I.M.G. 2002. Single cell oil production by <E5>Yarrowia lipolytica</E5> growing on an industrial derivative of animal fat in batch cultures. Applied Microbiology and Biotechnology, 58(3), 308-312.
    Alexander, M.A., Chapman, T.W., Jeffries, T.W. 1988. Xylose metabolism by Candida shehatae in continuous culture. Appl. Microbiol. Biotechnol. , 28(4), 478-486.
    Alvarez, H.A., Steinbuchel, A.S. 2002. Triacylglycerols in prokaryotic microorganisms. Applied Microbiology and Biotechnology, 60(4), 367-376.
    Alvarez, H.M., Mayer, F., Fabritius, D., Steinbuchel, A. 1996. Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch. Microbiol., 165(6), 377-386.
    Atabani, A.E., Silitonga, A.S., Badruddin, I.A., Mahlia, T.M.I., Masjuki, H.H., Mekhilef, S. 2012. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews, 16(4), 2070-2093.
    Athenstaedt, K., Jolivet, P., Boulard, C., Zivy, M., Negroni, L., Nicaud, J., Chardot, T. 2006. Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics 6(5), 1450-1459.
    Ayhan, D. 2009. Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conversion and Management, 50(4), 923-927.
    Ayhan, D. 2003. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Conversion and Management, 44(13), 2093-2109.
    Ayhan, D. 2006. Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics. Energy Conversion and Management, 47(15–16), 2271-2282.
    Barth, G., Gaillardin, C. 1997. Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiology Reviews, 19(4), 219-237.
    Beopoulos, A., Chardot, T., Nicaud, J.-M. 2009. Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie, 91(6), 692-696.
    Beopoulos, A., Mrozova, Z., Thevenieau, F., Le Dall, M.-T., Hapala, I., Papanikolaou, S., Chardot, T., Nicaud, J.-M. 2008. Control of Lipid Accumulation in the Yeast Yarrowia lipolytica. Appl. Environ. Microbiol., 74(24), 7779-7789.
    Bicker, M., Endres, S., Ott, L., Vogel, H. 2005. Catalytical conversion of carbohydrates in subcritical water: A new chemical process for lactic acid production. Journal of Molecular Catalysis A: Chemical, 239(1-2), 151-157.
    Bligh, E.G., Dyer, W.J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37, 911-917.
    Brunner, G. 1994. Gas extraction: An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes, (Ed.) S. Darmstadt, Springer. New York.
    Chandel, A.K., Kapoor, R.K., Singh, A., Kuhad, R.C. 2007a. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresource Technology, 98(10), 1947-1950.
    Chandel, A.K., Kapoor, R.K., Singh, A., Kuhad, R.C. 2007b. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour. Technol., 98, 1947-1950.
    Chen, X., Li, Z., Hu, F., Ryu, D.D.R., Bao, J. 2009. Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Appl. Biochem. Biotech., 159(3), 591-604
    Cheng, K.-K., Zhang, J.-A., Ping, W.-X., Ge, J.-P., Zhou, Y.-J., Ling, H.-Z., Xu, J.-M. 2008a. Sugarcane Bagasse Mild Alkaline/Oxidative Pretreatment for Ethanol Production by Alkaline Recycle Process. Applied Biochemistry and Biotechnology, 151(1), 43-50.
    Cheng, K.K., Cai, B.Y., Zhang, J.A., Ling, H.Z., Zhou, Y.J., Ge, J.P., Xu, J.M. 2008b. Sugarcane bagasses hemicellulose hydrolysate for ethanol production by acid recovery process. Biochem. Eng. J. , 38, 105-109.
    Colin, R., Hugo, S., Zvi, C. 2004. Processing Aspects of Single-Cell Oils. in: Nutritionally Enhanced Edible Oil Processing, AOCS Publishing.
    da Silva, A.S.A., Inoue, H., Endo, T., Yano, S., Bon, E.P.S. 2010. Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresource Technology, 101(19), 7402-7409.
    Demirbas, A. 2009. Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conversion and Management, 50(4), 923-927.
    Demirbas, A. 2006. Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics. Energy Conversion and Management, 47(15–16), 2271-2282.
    Dube, M.A., Tremblay, A.Y., Liu, J. 2007. Biodiesel production using a membrane reactor Bioresour. Technol., 98(3), 639-647.
    Easterling, E.R., French, W.T., Hernandez, R., Licha, M. 2009. The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresour. Technol. , 100(1), 356-361.
    Eckey, E. 1956. Esterification and interesterification. Journal of the American Oil Chemists' Society, 33(11), 575-579.
    Eller, F., Teel, J., Palmquist, D. 2011. Continuous Hydrolysis of Cuphea Seed Oil in Subcritical Water. Journal of the American Oil Chemists' Society, 88(9), 1455-1461.
    Fakas, S., Papanikolaou, S., Galiotou-Panayotou, M., Komaitis, M., Aggelis, G. 2008. Organic nitrogen of tomato waste hydrolysate enhances glucose uptake and lipid accumulation in Cunninghamella echinulata. J. Appl. Microbiol. , 105 (4), 1062-70.
    Faulon, J.-L., Carlson, G.A., Hatcher, P.G. 1994. A three-dimensional model for lignocellulose from gymnospermous wood. Organic Geochemistry, 21(12), 1169-1179.
    Freedman, B., Butterfield, R., Pryde, E. 1986. Transesterification kinetics of soybean oil 1. Journal of the American Oil Chemists' Society, 63(10), 1375-1380.
    Fukuda, H., Kondo, A., Noda, H. 2001. Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering, 92(5), 405-416.
    Galkin, A.A., Lunin, V.V. 2005. Subcritical and supercritical water: a universal medium for chemical reactions. Russ. Chem. Rev.(74 ), 21-35.
    Gamez, S., Gonzalez-Cabriales, J.J., Ramirez, J.A., Garrote, G., Vazquez, M. 2006. Study of the hydrolysis of sugar cane bagasse using phosphoric acid. Journal of Food Engineering, 74(1), 78-88.
    Godshall, M.A. 2005. Enhancing the agro-industrial value of the cellulosic residues of sugarcane. International Sugar Journal, 107(1273 SPEC. ISS.), 53-60.
    Gog, A., Roman, M., Toşa, M., Paizs, C., Irimie, F.D. 2012. Biodiesel production using enzymatic transesterification – Current state and perspectives. Renewable Energy, 39(1), 10-16.
    Han, H., Cao, W., Zhang, J. 2005. Preparation of biodiesel from soybean oil using supercritical methanol and CO2 as co-solvent. Process Biochemistry, 40(9), 3148-3151.
    Hansen, N.M.L., Plackett, D. 2008. Sustainable Films and Coatings from Hemicelluloses: A Review. Biomacromolecules, 9(6), 1493-1505.
    Hansson, L., Dostfilek, M. 1986. Influence of cultivation conditions on lipid production by Cryptococcus albidus. Appl. Microbiol. Biotechnol. , 24(1), 12-18.
    He, H., Wang, T., Zhu, S. 2007. Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process. Fuel, 86(3), 442-447.
    Herrera, S. 2004. Industrial biotechnology: a chance at redemption. Nat Biotech, 22(6), 671-675.
    Herrero, M., Cifuentes, A., Ibanez, E. 2006. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chemistry, 98(1), 136-148.
    Holliday, R.L., King, J.W., List, G.R. 1997. Hydrolysis of Vegetable Oils in Sub- and Supercritical Water. Industrial & Engineering Chemistry Research, 36(3), 932-935.
    Holliday, R.L., Y.M. Jong, B., Kolis, J.W. 1998. Organic synthesis in subcritical water: Oxidation of alkyl aromatics. The Journal of Supercritical Fluids, 12(3), 255-260.
    Hsu, T.A., Ladisch, M.R., Tsao, G.T. 1980. Alcohol from cellulose. Chemical Technology 10(5), 315-319.
    Huang, C., Zong, M.H., Wu, H., Liu, Q.P. 2009. Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour. Technol. , 100 (19), 4535-4538.
    Huynh, L.-H., Kasim, N.S., Ju, Y.-H. 2010. Extraction and analysis of neutral lipids from activated sludge with and without sub-critical water pre-treatment. Bioresource Technology, 101(22), 8891-8896.
    Iso, M., Chen, B., Eguchi, M., Kudo, T., Shrestha, S. 2001. Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. Journal of Molecular Catalysis B: Enzymatic, 16(1), 53-58.
    Jalbani, N., Kazi, T.G., Arain, B.M., Jamali, M.K., Afridi, H.I., Sarfraz, R.A. 2006. Application of factorial design in optimization of ultrasonic-assisted extraction of aluminum in juices and soft drinks. Talanta, 70(2), 307-314.
    Jon Van, G. 2005. Biodiesel processing and production. Fuel Processing Technology, 86(10), 1097-1107.
    Ju, Y.H., Huynh, L.H., Kasim, N.S., Guo, T.J., Wang, J.H., Fazary, A.E. 2011. Analysis of soluble and insoluble fractions of alkali and subcritical water treated sugarcane bagasse. Carbohydrate Polymers, 83(2), 591-599.
    Kasim, N.S., Tsai, T.-H., Gunawan, S., Ju, Y.-H. 2009. Biodiesel production from rice bran oil and supercritical methanol. Bioresource Technology, 100(8), 2399-2403.
    Khuwijitjaru, P., Fujii, T., Adachi, S., Kimura, Y., Matsuno, R. 2004. Kinetics on the hydrolysis of fatty acid esters in subcritical water. Chemical Engineering Journal, 99(1), 1-4.
    Kruse, A., Dinjus, E. 2007. Hot compressed water as reaction medium and reactant: Properties and synthesis reactions. The Journal of Supercritical Fluids, 39(3), 362-380.
    Kruse, A., Gawlik, A. 2002. Biomass Conversion in Water at 330−410 °C and 30−50 MPa. Identification of Key Compounds for Indicating Different Chemical Reaction Pathways. Industrial & Engineering Chemistry Research, 42(2), 267-279.
    Kuhad, R., Singh, A., Eriksson, K.-E. 1997. Microorganisms and enzymes involved in the degradation of plant fiber cell walls. in: Biotechnology in the Pulp and Paper Industry, (Eds.) K. Eriksson, W. Babel, H. Blanch, C. Cooney, S. Enfors, A. Fiechter, A. Klibanov, B. Mattiasson, S. Primrose, H. Rehm, P. Rogers, H. Sahm, K. Schugerl, G. Tsao, K. Venkat, J. Villadsen, U. von Stockar, C. Wandrey, Vol. 57, Springer Berlin / Heidelberg, pp. 45-125.
    Kuhad, R.C., Singh, A. 1993. Lignocellulose Biotechnology: Current and Future Prospects. Critical Reviews in Biotechnology, 13(2), 151-172.
    Kurat, C.F., Natter, K., Petschnigg, J., Wolinski, H., Scheuringer, K., Scholz, H., Zimmermann, R., Leber, R., Zechner, R., Kohlwein, S.D. 2006. Obese Yeast: Triglyceride Lipolysis Is Functionally Conserved from Mammals to Yeast. Journal of Biological Chemistry, 281(1), 491-500.
    Kusdiana, D., Saka, S. 2004. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technology, 91(3), 289-295.
    Lagunas, R. 1986. Misconceptions about the energy metabolism of Saccharomyces cerevisiae. Yeast, 2(4), 221-228.
    Lam, M.K., Lee, K.T., Mohamed, A.R. 2010. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances, 28(4), 500-518.
    Laopaiboon, P., Thani, A., Leelavatcharamas, V., Laopaiboon, L. 2010. Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresour. Technol. , 101( 3 ), 1036-1043.
    Lee, Y., Iyer, P., Torget, R. 1999. Dilute-Acid Hydrolysis of Lignocellulosic Biomass. in: Recent Progress in Bioconversion of Lignocellulosics, (Eds.) G. Tsao, A. Brainard, H. Bungay, N. Cao, P. Cen, Z. Chen, J. Du, B. Foody, C. Gong, P. Hall, N. Ho, D. Irwin, P. Iyer, T. Jeffries, C. Ladisch, M. Ladisch, Y. Lee, N. Mosier, H. Muhlemann, M. Sedlak, N. Shi, J. Tolan, R. Torget, D. Wilson, L. Xia, Vol. 65, Springer Berlin / Heidelberg, pp. 93-115.
    Ligthelm, M.E., Prior, B.A., Preez, J.C., Brandt, V. 1988. An investigation of D-{1-13C} xylose metabolism in Pichia stipitis under aerobic and anaerobic conditions. Appl. Microbiol. Biotechnol. , 28(3), 293-296.
    Lynd, L.R., Wyman, C.E., Gerngross, T.U. 1999. Biocommodity Engineering. Biotechnol. Prog. , 15(5), 777-793.
    Ma, F., Hanna, M.A. 1999. Biodiesel production: a review. Bioresource Technology, 70(1), 1-15.
    Madzak C., Treton B., S., B.-R. 2000 Strong hybrid promoters and integrative expression/secretion vectors for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J Mol Microbiol Biotechnol, 2(2), 207-16.
    Maeda, R.N., Serpa, V.I., Rocha, V.A.L., Mesquita, R.A.A., Anna, L.M.M.S., de Castro, A.M., Driemeier, C.E., Pereira Jr, N., Polikarpov, I. 2011. Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochemistry, 46(5), 1196-1201.
    Marulanda, V.F., Anitescu, G., Tavlarides, L.L. 2010. Investigations on supercritical transesterification of chicken fat for biodiesel production from low-cost lipid feedstocks. The Journal of Supercritical Fluids, 54(1), 53-60.
    McMillan, J.D. 1994. Pretreatment of lignocellulosic biomass. in: Enzymatic ConVersion of Biomass for Fuels Production, (Eds.) M.E. Himmel, J.O. Baker, R.P. Overend, American Chemical Society. Washington DC, pp. 292-324.
    Meesters, P.A., Eggink, G. 1996. Isolation and characterization of a delta-9 fatty acid desaturase gene from the oleaginous yeast Cryptococcus curvatus CBS 570. Yeast (12), 723-730
    Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., Xian, M. 2009. Biodiesel production from oleaginous microorganisms. Renewable Energy, 34(1), 1-5.
    Mustapa, A.N., Manan, Z.A., Mohd Azizi, C.Y., Nik Norulaini, N.A., Omar, A.K.M. 2009. Effects of parameters on yield for sub-critical R134a extraction of palm oil. Journal of Food Engineering, 95(4), 606-616.
    Nelson, L., Foglia, T., Marmer, W. 1996. Lipase-catalyzed production of biodiesel. Journal of the American Oil Chemists' Society, 73(9), 1191-1195.
    Nie, K., Xie, F., Wang, F., Tan, T. 2006. Lipase catalyzed methanolysis to produce biodiesel: Optimization of the biodiesel production. Journal of Molecular Catalysis B: Enzymatic, 43(1–4), 142-147.
    Pandey, A., Soccol, C.R. 2000. Economic utilization of crop residues for value addition: a futuristic approach J. Sci. Ind. Res. , 59(1 ), 12-22.
    Pandey, A., Soccol, C.R., Nigam, P., Soccol, V.T. 2000. Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresource Technology, 74(1), 69-80.
    Papanikolaou, S., Aggelis, G. 2010. Yarrowia lipolytica: a model microorganism used for the production of tailor-made lipids. Eur. J. Lipid Sci. Techol. , 112(6), 639-654.
    Papanikolaou, S., Chevalot, I., Komaitis, M., Marc, I., Aggelis, G. 2002. Single cell oil production by <E5>Yarrowia lipolytica</E5> growing on an industrial derivative of animal fat in batch cultures. Applied Microbiology and Biotechnology, 58(3), 308-312.
    Papanikolaou, S., Diamantopoulou, P., Chatzifragkou, A., Philippoussis, A., Aggelis, G. 2010. Suitability of low-cost sugars as substrates for lipid production by the fungus Thamnidium elegans. Energy Fuels 24(7), 4078-4086.
    Papanikolaou, S., Galiotou-Panayotou, M., Chevalot, I., Komaitis, M., Marc, I., Aggelis, G. 2006. Influence of Glucose and Saturated Free-Fatty Acid Mixtures on Citric Acid and Lipid Production by <i>Yarrowia lipolytica</i>. Current Microbiology, 52(2), 134-142.
    Papanikolaou, S., Galiotou-Panayotou, M., Fakasa, S., Komaitis, M., Aggelis, G. 2007. Lipid production by oleaginous Mucorales cultivated on renewable carbon sources. Eur. J. Lipid Sci. Technol. , 109(11), 1060-1070.
    Papanikolaou, S., Sarantou, S., Komaitis, M., Aggelis, G. 2004. Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. Journal of Applied Microbiology, 97(4), 867-875.
    Park, E.Y., Sato, M., Kojima, S. 2006. Fatty acid methyl ester production using lipase-immobilizing silica particles with different particle sizes and different specific surface areas. Enzyme and Microbial Technology, 39(4), 889-896.
    Quitain, A.T., Faisal, M., Kang, K., Daimon, H., Fujie, K. 2002. Low-molecular-weight carboxylic acids produced from hydrothermal treatment of organic wastes. Journal of Hazardous Materials, 93(2), 209-220.
    Rainey, T.J., Covey, G., Shore, D. 2006. An analysis of Australian sugarcane regions for bagasse paper manufacture. International Sugar Journal, 108(1295), 640-644.
    Rajam, L., Soban Kumar, D., Sundaresan, A., Arumughan, C. 2005. A novel process for physically refining rice bran oil through simultaneous degumming and dewaxing. J. Am. Oil Chem. Soc., 82(3), 213-220.
    Ratledge, C., Wynn, J.P. 2002. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol. , 51, 1-51.
    Rodriguez, C., Dominguez, A. 1984. The growth characteristics of Saccharomycopsis lipolytica: morphology and induction of mycelium formation. Canadian Journal of Microbiology, 30(5), 605-612.
    Rogalinski, T., Herrmann, S., Brunner, G. 2005. Production of amino acids from bovine serum albumin by continuous sub-critical water hydrolysis. The Journal of Supercritical Fluids, 36(1), 49-58.
    Salak Asghari, F., Yoshida, H. 2006. Acid-Catalyzed Production of 5-Hydroxymethyl Furfural from d-Fructose in Subcritical Water. Industrial & Engineering Chemistry Research, 45(7), 2163-2173.
    Sasaki, M., Adschiri, T., Arai, K. 2003. Fractionation of sugarcane bagasse by hydrothermal treatment. Bioresource Technology, 86(3), 301-304.
    Sasaki, M., Kabyemela, B., Malaluan, R., Hirose, S., Takeda, N., Adschiri, T., Arai, K. 1998. Cellulose hydrolysis in subcritical and supercritical water. The Journal of Supercritical Fluids, 13(1-3), 261-268.
    Shimada, Y., Watanabe, Y., Sugihara, A., Tominaga, Y. 2002. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. Journal of Molecular Catalysis B: Enzymatic, 17(3–5), 133-142.
    Shu, Q., Gao, J., Nawaz, Z., Liao, Y., Wang, D., Wang, J. 2010. Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst. Applied Energy, 87(8), 2589-2596.
    Singh, A. 1992. Lipid accumulation by a cellulolytic strain of Aspergillus niger. Cell. Mol. Life. Sci. , 48(3), 234-236.
    Smeets, E., Junginger, M., Faaij, A., Walter, A., Dolzan, P., Turkenburg, W. 2008. The sustainability of Brazilian ethanol--An assessment of the possibilities of certified production. Biomass and Bioenergy, 32(8), 781-813.
    Song, E.-S., Lim, J.-w., Lee, H.-S., Lee, Y.-W. 2008. Transesterification of RBD palm oil using supercritical methanol. The Journal of Supercritical Fluids, 44(3), 356-363.
    Sun, J.X., Sun, X.F., Sun, R.C., Su, Y.Q. 2004. Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydrate Polymers, 56(2), 195-204.
    Sun, Y., Cheng, J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1), 1-11.
    Taherzadeh, M., Karimi, K. 2008. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. International Journal of Molecular Sciences, 9(9), 1621-1651.
    Tan, K.T., Gui, M.M., Lee, K.T., Mohamed, A.R. 2010. An optimized study of methanol and ethanol in supercritical alcohol technology for biodiesel production. The Journal of Supercritical Fluids, 53(1–3), 82-87.
    Tsigie, Y.A., Huynh, L.H., Ahmed, I.N., Ju, Y.-H. 2012. Maximizing biodiesel production from Yarrowia lipolytica Po1g biomass using subcritical water pretreatment. Bioresource Technology, 111(0), 201-207.
    Tsigie, Y.A., Wang, C.-Y., Truong, C.-T., Ju, Y.-H. 2011. Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresource Technology, 102(19), 9216-9222.
    Vandana, V., Karuna, M., Vijayalakshmi, P., Prasad, R. 2001. A simple method to enrich phospholipid content in commercial soybean lecithin. J. Am. Oil Chem. Soc., 78(5), 555-556.
    Vicente, G., Martı́nez, M., Aracil, J. 2004. Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technology, 92(3), 297-305.
    Yin, J.-Z., Xiao, M., Song, J.-B. 2008. Biodiesel from soybean oil in supercritical methanol with co-solvent. Energy Conversion and Management, 49(5), 908-912.
    Yoshida, H., Terashima, M., Takahashi, Y. 1999. Production of Organic Acids and Amino Acids from Fish Meat by Sub-Critical Water Hydrolysis. Biotechnology Progress, 15(6), 1090-1094.
    Zhang, J., Chen, S., Yang, R., Yan, Y. 2010. Biodiesel production from vegetable oil using heterogenous acid and alkali catalyst. Fuel, 89(10), 2939-2944.
    Zhang, Y., Dube, M.A., McLean, D.D., Kates, M. 2003. Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Technology, 89(1), 1-16.
    Zinjarde, S.S., Pant, A., Deshpande, M.V. 1998. Dimorphic transition in Yarrowia lipolytica isolated from oil-polluted sea water. Mycological Research, 102(5), 553-558.

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE