簡易檢索 / 詳目顯示

研究生: 李爾生
Neil - Alvin S. Cala
論文名稱: Ostwald Ripening Rate of Two-Component Miniemulsion Systems
Ostwald Ripening Rate of Two-Component Miniemulsion Systems
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 黃延吉
Huang Yan-Ji
許榮木
Hsu Jung-Mu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 93
外文關鍵詞: Miniemulsion Stability
相關次數: 點閱:137下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

The effect of varying the costabilizer volume fraction on the Ostwald ripening rate of various two-component miniemulsion systems comprising of either methyl methacrylate (MMA) or styrene (STY) as monomers, stabilized by either lauryl methacrylate (LMA) or stearyl methacrylate (SMA) was investigated. The Ostwald ripening rate was found to decrease with increasing costabilizer content in the monomer mixture. Systems stabilized by the more hydrophilic LMA show higher Ostwald ripening rates as compared to systems stabilized by SMA.

It was found that the Ostwald ripening rate follow Kabalnov’s equation 1/ω = φ1/ω1 + φ2/ω2 only at low costabilizer volume fractions, deviating significantly as the costabilizer volume fraction is increased. An empirical equation 1/ω = 1/ω1*(1+K1φ2+K2φ22) was fitted into the experimental values of the Ostwald ripening rate. This gave satisfactory values of the coefficient of determination (R2). The effect of varying the finite disperse phase volume fraction on the Ostwald ripening rate was also studied. It was shown that changing the volume fraction of the disperse phase does alter the Ostwald ripening rate.


The effect of varying the costabilizer volume fraction on the Ostwald ripening rate of various two-component miniemulsion systems comprising of either methyl methacrylate (MMA) or styrene (STY) as monomers, stabilized by either lauryl methacrylate (LMA) or stearyl methacrylate (SMA) was investigated. The Ostwald ripening rate was found to decrease with increasing costabilizer content in the monomer mixture. Systems stabilized by the more hydrophilic LMA show higher Ostwald ripening rates as compared to systems stabilized by SMA.

It was found that the Ostwald ripening rate follow Kabalnov’s equation 1/ω = φ1/ω1 + φ2/ω2 only at low costabilizer volume fractions, deviating significantly as the costabilizer volume fraction is increased. An empirical equation 1/ω = 1/ω1*(1+K1φ2+K2φ22) was fitted into the experimental values of the Ostwald ripening rate. This gave satisfactory values of the coefficient of determination (R2). The effect of varying the finite disperse phase volume fraction on the Ostwald ripening rate was also studied. It was shown that changing the volume fraction of the disperse phase does alter the Ostwald ripening rate.

ACKNOWLEDGEMENT i TABLE OF CONTENTSii LIST OF FIGURESiv LIST OF TABLESvi ABSTRACTvii Chapter I Introduction1 1.1Emulsion1 1.2Emulsion Stability2 1.3Miniemulsion2 1.4About this Research3 Chapter II Literature Survey5 2.1Overview5 2.2Preparation of Miniemulsions5 2.2.1 Formulation5 2.2.2 Method of Preparation7 2.3Ostwald Ripening Rate7 2.4Ostwald Ripening Theories19 Chapter III Experimental23 3.1Chemicals23 3.2Equipments23 3.2.1 Laser Particle Size Analyzing System (LPA), Photal 3000/310023 3.2.2 Others Equipments Used24 3.2.3 Apparatus Used 24 3.3Experimental Procedure24 3.3.1 Preparation of Miniemulsion24 3.3.2 Measurement of Monomer Droplet Size or Latex Particle Size by Dynamic Light Scattering (DLS) 24 3.3.3 Formulation of Dilution Solution25 3.3.4 Miniemulsion Stability Experiment25 3.4Schematic Diagram of Experimental Procedure27 3.5Experimental Set-up28 Chapter IV Results and Discussion29 4.1Miniemulsion Stability29 4.1.1 Monomer Droplet Degradation upon Aging29 4.1.2 Effect of Monomer Composition on Ostwald Ripening Rate32 4.1.3 Modelling of the Experimental Data42 4.2Mechanism of Ostwald Ripening51 4.3Ostwald Ripening Rate at Finite Volume Fractions of Total Disperse Phase (ФOIL)53 Chapter V Conclusion60 References61 Appendix Raw Data63

1.Myers, D. Surfaces, Interfaces and Colloids: Principles and Applications, 2nd ed., Wiley-VCH, New York, 1999, p 254.
2.Sudol, E.D.; El-Aasser, M.S., In Emulsion Polymerization and Emulsion Polymers; Lovell, P.A.,
El-Aasser, M.S., Eds., Chichester, 1997, p 699.
3.Ugelstad, J.; Hansen, F.K.; Lange, S., Makromol Chem 1974, 175, 507.
4.Davies, S.S.; Smith, A., Theory and practice of emulsion technology; New York: Academic Press 1976. p. 325.
5.Ugelstad, J., Makromol Chem 1978, 179, 815.
6.Azad, A.R.M.; Fitch, R.M. (1980) In: Polymer Colloids II. Plenum, New York, p 95.
7.Chern, C.S.; Chen, T.J., Colloids Surface A 1998, 138, 165.
8.Chern, C.S.; Chen, T.J., Colloid Polym Sci 1997, 275, 1060.
9.Chern, C.S.; Liou, Y.C., Polymer 1999, 40, 3763.

10. Chern, C.S.; Sheu, J.C., J Polym Sci Pol Chem 2000, 38, 3188.

11.Miller, C.M.; Sudol, E.D.; Silebi, C.A.; El-Aasser M.S., Macromolecules 1995, 28, 2754.

12.Miller, C.M.; Blythe, P.J.; Sudol, E.D.; Silebi, C.A.; El-Aasser, M.S., J Polym Sci Part A: Polym Chem 1994, 32, 2365.

13.Mouran, D.; Reimers, J.; Schork, F.J., J Polym Sci Part A: Polym Chem 1996, 34, 1073.

14.Mouran, D.; Reimers, J.; Schork, F.J., J Polym Sci Part A: Polym Chem 1997, 35, 595.

15.Asua, J.M., Prog. Polym Sci. 2002, 27, 1283.

16.Kabalnov, A.S.; Pertzov, A.V.; Shchukin, E.D., Colloids Surf. 1987, 24, 19.

17.Varescon, C.; Manfredi, A.; Le Blanc, M.; Reiss, J.G., J Colloid Interface Sci 1990, 137, 373.

18.Lifshitz, I.M.; Slezov, V.V., J Phys Chem Solids 1961, 19, 35.

19.Wagner, C., Ber Bunsenges Phys Chem 1961, 65, 581.

20.Baldan, A., J of Materials Sci 2002, 37, 2176.

21.Higuchi, W.I.; Misra, J., J Pharm Sci 1962, 51, 459.

22.Kabalnov, A.S.; Makarov, K.N.; Pertzov, A.V.; Shchukin, E.D., J Colloid Interface Sci 1990, 138 (1), 98.

23.Tauer, K., Polymer 2005, 46, 1885.

24.Chern, C.S.; Lin, C.H., J Applied Polymer Sci 2004, 92, 1961.

25.Chern, C.S.; Liou, Y.C., Macromol Chem Phys 1998, 199, 2051.

26.Taylor, P., Adv Colloid Interface Sci 1998, 75, 107.

27.Taylor P.; Ottewill, R.H., Prog Colloid Polymer Sci 1994, 97, 199.

28. Heller, W.; Bhatnager, H.C.; Nakagaki, M., J Chem Phys 1962, 36, 1163.

29.Ardell, A.J.; Chellmann, D.J., Acta Met 1974, 22, 577.

30.Brailsford, A.D.; Wynblatt, P., J Materials Sci 1979, 27, 489.

31.Davies, C.K.L.; Nash, P.; Stevens, R.N., Acta Met 1980, 28, 179.

32.Tsumuruya, K.; Miyata, Y., Acta Met 1983, 31, 437.

33.Marqusee, J.A.; Ross, J., J Chem Phys 1983, 79, 373.

34.Enomoto, Y.; Tokuyama, M.; Kawasaki, K., Acta Met 1986, 34, 2119.

35.Voorhees, P.W.; Glicksman, M.E., Acta Met 1986, 32, 2013.

QR CODE