簡易檢索 / 詳目顯示

研究生: 徐振傑
Cheng-Chieh Hsu
論文名稱: 高層木構造混合結構與鋼筋混凝土結構之結構材料使用效率比較
Comparison of structural material usage efficiency between high-rise timber hybrid structure and RC structure in earthquake zone
指導教授: 蔡孟廷
Meng-Ting Tsai
口試委員: 彭雲宏
Yeng-Horng Perng
林慶元
Ching-Yuan Lin
學位類別: 碩士
Master
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 97
中文關鍵詞: 混合構造高層木構造耐震建築物重量永續建築Midas
外文關鍵詞: Hybrid Structure, High-Rise Wooden Structure, Earthquake Resistance, Building weight, Sustainable Development, Midas
相關次數: 點閱:272下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現代都市地狹人稠,建築物轉向垂直化發展,以鋼骨及鋼筋混凝土為主的
    高層建築使土地的負荷增加。近年因結構用集成材技術的進步,在建築物建造
    中使用大量的木材能夠輕量化建築、減輕土地的負荷,另一方面減少原料生產
    的碳排放量,達到永續環境及生態保護的作用。
    本研究利用Midas 結構分析軟體,比較15 層樓、高度52.5m 的全RC 結
    構與兩種RC-木構造混合結構,以興隆一區公宅為例,計算三者在同樣的載重
    與地震條件下達到相同剛性時之材料重量差異。混合I 型結構係將非服務核處
    的樓板置換為Cross-Laminated Timber (CLT)、剪力牆置換為Glue-
    Laminated Timber (GLT)斜撐;混合II 型結構則將非服務核處的樓板置換為
    CLT,樑、柱、剪力牆則全置換為GLT 並以鋼接頭接合。
    經由調整構件尺寸,使三者有接近的振動週期與受到的地震加速度,而在
    相同的建築物剛性下,混合I 型結構相較RC 結構減少了38.7%的結構體重
    量;混合II 型結構則相較RC 結構減少了52.82%的結構體重量,並且混合I 型
    在受到地震力時比全RC 結構有著更小的樓層位移角。另外本研究也探討了不
    同結構類型對基礎的反作用力分布。在高層建築的需求量愈來愈大的當下,減
    少建築物自重,能使土地的負荷減輕,也對環境也更加友善。


    The modern city is crowded and crowded, and the buildings are
    turning to vertical development. The high-rise buildings mainly made of
    steel skeleton and reinforced concrete lead to an increase in the load on
    the land.
    In recent years, due to the advancement of structural timber
    technology, the use of a large amount of wood in building construction can
    lighten the construction and reduce the load on the land. On the other
    hand, it can also reduce the carbon emissions of raw material production
    and achieve sustainable environmental and ecological protection effect.
    This study used Midas structural analysis software to compare the 15-
    story RC structure with a height of 52.5m and two types of RC-Timber
    hybird structure. Taking the public house in Xinglong District 1 as an
    example, calculate the material weight difference between the three when
    they reach the same rigidity under the same load and earthquake
    conditions.
    By adjusting the size of the beam and column to make the three types
    have similar vibration periods and earthquake accelerations. Comparing
    the weight of the structure, the hybrid I type is 38.7% less weight than the
    RC structure, and the hybrid II type structure is 52.82% less weight than
    the RC structure. And the hybrid I type has a smaller floor displacement
    than the RC structure when subjected to seismic forces. In addition, this
    study also explored the distribution of the reaction force of different
    structure types on the foundation. With the increasing demand for high-rise buildings, reducing the weight of the building itself can reduce the
    load on the land and be more friendly to the environment.

    摘要 Extended Abstract 誌謝 目錄 圖目錄 表目錄 第1章、緒論 1-1 研究背景與動機 1-2 研究目的 1-3 研究方法與架構 1-4 研究流程 第2章、文獻回顧 2-1 永續建築 2-2 工程木材 2-2-1 木材特性 2-2-2 工程木製品 2-2-3 新式木構造 2-3 結構系統 2-3-1 木構造耐震設計要件 2-3-2 用途係數 2-3-3 載重 2-3-4 設計地震力組合 2-3-5 震區 2-3-6 韌性容量 2-3-7 長跨距樑柱尺寸探討 2-3-8 建築物容許層間變位角 2-3-9 中高層木構造 2-3-10 混合構造系統 2-3-11 混合構造參考 第3章、數值模擬規劃與模型設計 3-1 研究範疇及邊界 3-2 數值模型設計與目標 3-2-1 模型設計 3-2-2 結構系統設計 3-2-3 預期目標 3-3 平面配置 3-4 參數設定 3-4-1 材料參數 3-4-2 構件尺寸設計 3-4-3 鋼筋混凝土配筋設計 3-4-4 耐震規範及地震力設定 3-4-5 基礎、桿件接合設定與設計 3-4-6 設計載重 第4章、數值模擬模型 4-1 初步模擬比較 4-2 全RC結構模擬 4-2-1 構件尺寸及結構平面圖 4-2-2 振動週期、模態 4-2-3 配筋設計及檢核 4-2-4 層間變位 4-3 混合I型 4-3-1 調整前初步模擬尺寸及週期 4-3-2 調整後構件及結構平面圖 4-3-3 振動週期、模態 4-3-4 配筋設計及檢核 4-3-5 層間變位 4-4 混合II型 4-4-1 調整前初步模擬尺寸及週期 4-4-2 調整後構件及結構平面圖 4-4-3 振動週期、模態 4-4-4 配筋設計及檢核 4-4-5 層間變位 第5章、綜合比較與分析 5-1 振動週期與地震加速度 5-2 層間變位比較與分析 5-2-1 Ex水平位移 5-2-2 Ey水平位移 5-2-3 受載重Z 軸垂直位移 5-3 建築物重量及材料使用量 5-3-1 建築物重量 5-3-2 材料使用量 5-4 基礎支承反力 第6章、結論與建議 6-1 結論 6-1-1 建築結構剛性 6-1-2 建築結構體重量與預期減輕效果 6-1-3 材料使用量 6-2 後續研究建議 參考文獻 中文文獻 英文文獻 網路文獻

    中文文獻
    【C1】內政部(2011)。《民國101 年至民國104 年整體住宅政策實施方
    案》。
    【C2】內政部營建署(2021)。《建築技術規則》。
    【C3】張世典(1999)。《綠建築與永續發展》。兩岸人口、資源與永續社會發
    展學術研討會。
    【C4】馮琇慧(2016)。《台灣民眾對建築構造材料上的認知與偏好調查》。國
    立台灣科技大學建築研究所碩士論文,台北市。
    【C5】康文豪(2008)。《建築物二氧化碳減量之方法分析探討》。
    【C6】張又升(2002)。《建築物生命週期二氧化碳減量評估》。國立成功大學
    建築研究所博士論文1、5、145 頁,台南市。
    【C7】塗三賢(2007)。《台灣地區木構造住宅對探儲存與二氧化碳減量之貢
    獻》。國立台灣大學森林環境暨資源學系博士論文78 頁,台北市。
    【C8】邱志明(2012,06)。《台灣人供林經營面臨之挑戰與對策》。台灣林業第
    三十八卷,第三期16~26 頁。
    【C9】中華木質構造建築協會(2014)。《國産造林木材應用於木構造建築》。
    行政院農業委員會林務局。
    【C10】蔡孟廷、方尹萍、張紋韶(2018)。《都市木造的未來》。台北市:麥浩
    斯。
    【C11】潘建廷(2019)。《木材使用優先權系統:高層木構造與RC 構造之施工
    期程及成本比較》。國立台灣科技大學建築研究所碩士論文,台北市。
    【C12】內政部營建署(2011)。《鋼骨鋼筋混凝土構造設計規範與解說》。
    【C13】內政部營建署(2021)。《木構造建築物設計及施工技術規範》。
    【C14】內政部營建署(2011)。《建築物耐震設計規範及解說》。
    【C15】內政部建築研究所(1998)。《長跨距暨挑高建築物特殊結構系統之調
    查分析》。
    【C16】蔡孟廷(2013)。《多層木質平立面混構造之耐震要素構面剛性對於變
    形之相關影響及評估基準之建立研究》蔡孟廷譯。東京大學建築研究所博士學
    位論文,東京。
    【C17】曾民安(2017)。《風力及地震力對高層結構物之變位影響分析》。國
    立成功大學土木工程學研究所碩士論文,台南市。
    【C18】許秭菱(2017)。《實驗研究探討接合形式對鋼-木組合樑結構行為之影
    響》。國立台北科技大學建築研究所碩士論文,台北市。
    【C19】翁駿民(2014)。《中低樓層建築之基礎隔震設計》。國立中興大學土
    木工程學研究所碩士論文,台中市。
    【C20】呂東苗(2016)。《使用SSTAN 與Midas 進行鋼構廠房案例分析與比
    較》。國立中興大學土木工程學研究所碩士論文,台中市。
    【C21】黃藝輝(2016)。《動力數值模擬探討立面混構造在靜力豎向分配設計
    上之放大係數》。國立台灣科技大學建築研究所碩士論文,台北市。
    【C22】塗耀賢、江文卿、周逢霖、洪志評(2010,08)。《含RC 牆耐震設計R
    值使用值之建議》。德霖學報第二十四期265~276 頁。

    英文文獻
    【E1】L. Huang, G. Krigsvoll, F. Johansen, Y. Liu, X. Zhang (2018): «Carbon
    emission of global construction sector». Renew. Sustain. Energy Rev., 81,
    pp. 1906-1916
    【E2】World Green Building Council: «World green building Council
    annual report 2018/19».
    【E3】United Nations Environment Programme: «The emissions gap
    report 2019».
    【E4】L. Gustavsson et al. (2017) : «Climate change effects of forestry
    and substitution of carbon-intensive materials and fossil fuels». Renew.
    Sustain. Energy Rev., 67, pp. 612-624
    【E5】R. Sathre, J. O’Connor (2010): «Meta-analysis of greenhouse gas
    displacement factors of wood product substitution». Environ. Sci. Pol.,
    13 (2), pp. 104-114
    【E6】L.F. Cabeza et al. (2014): «Life cycle assessment (LCA) and life cycle
    energy analysis (LCEA) of buildings and the building sector: a review».
    Renew. Sustain. Energy Rev., 29, pp. 394-416
    【E7】N. Lolli, S.M. Fufa, M.K. Wiik (2019): «An assessment of greenhouse
    gas emissions from CLT and glulam in two residential nearly zero
    energy buildings». Wood Mater. Sci. Eng., 14 (5), pp. 342-354
    【E8】Michael H.Ramage et al. (2017): «The wood from the trees: The
    use of timber in construction». Renewable and Sustainable Energy
    Reviews。Volume 68, Part 1, February, Pages 333-359
    【E9】M. Mallo, O. Espinoza (2015): «Awareness, perceptions and
    willingness to adopt cross-laminated timber by the architect
    community in the United States». J. Clean. Prod., 94, pp. 198-210
    【E10】S. Ahmed, I. Arocho (2019): «Emission of particulate matters
    during the construction: a comparative study on a cross-laminated timber (CLT) and a steel building construction project». J. Build. Eng., 22,
    pp. 281-294
    【E11】Cristiano Loss et al. (2018): «State-of-the-art review of
    displacement-based seismic design of timber buildings». Construction
    and Building Materials, Volume 191, 10 December, Pages 481-497
    【E12】C. Dickof, S.F. Stiemer, S. Tesfamarian (2012): «Wood-steel hybrid
    seismic force resisting systems seismic ductility». WCTE, Auckland
    【E13】Koshihara Mikio, Isoda Hiroshi, Yusa Shuitsu (2009): «The Design
    Installation of Five-Story new Timber Building in Japan». The
    insternational symposium on timber structure, Istanbul, Turkey,
    【E14】Yuxin Pan et al. (2021): «Seismic performance of a proposed
    wood-concrete hybrid system for high-rise buildings». Engineering
    Structures, Volume 238, 1 July, 112194
    【E15】JiaweiChen et al. (2021): «Non-linear simplified models for
    seismic response estimation of a novel tall timber-concrete hybrid
    structural system». Engineering Structures, Volume 229, 15 February,
    111635
    【E16】Xiong H, Ouyang L, Wu Y, Lu S. (2016): «Preliminary design of a
    novel hybrid tall building with concrete frame-tube and light wood
    boxes. World Conf». Timber Eng., Vienna, Austria: WCTE 2016.
    【E17】Shafayet Ahmed, Ingrid Arocho (2020): «Mass timber building
    material in the U.S. construction industry: Determining the existing
    awareness level, construction-related challenges, and
    recommendations to increase its current acceptance level». Cleaner
    Engineering and Technology, Volume 1, December, 100007。
    【E18】Konstantinos Voulpiotis et al. (2021): «A holistic framework for
    designing for structural robustness in tall timber buildings».
    Engineering Structures, Volume 227,15 January, 111432
    【E19】Austin Himes, Gwen Busby (2020): «Wood buildings as a climate
    solution». Developments in the Built Environment, Volume 4, November,
    100030
    【E20】Shafayet Ahmed, Ingrid Arocho (2021): «Analysis of cost
    comparison and effects of change orders during construction: Study of
    a mass timber and a concrete building project». Journal of Building
    Engineering, Volume 33, January, 101856
    【E21】M.F.L. Mallo, O. Espinoza (2016): «Cross-laminated timber vs.
    concrete/steel: cost comparison using a case study». WCTE 2016–World
    Conference on Timber Engineering
    【E22】Isabelle Hens et al. (2021): «Design space exploration for
    comparing embodied carbon in tall timber structural systems». Energy
    and Buildings, Volume 244, 1 August, 110983
    【E23】Ida Edskär, Helena Lidelöw (2019): «Dynamic properties of crosslaminated
    timber and timber truss building systems». Engineering
    Structures, Volume 186, 1 May, Pages 525-535
    【E24】Minjuan He et al. (2018): «Seismic performance evaluation of
    timber-steel hybrid structure through large-scale shaking table tests».
    Engineering Structures, Volume 175, 15 November, Pages 483-500
    【E25】Hao Li et al. (2019): «Cross-laminated Timber (CLT) in China: A
    State-of-the-Art». Journal of Bioresources and Bioproducts, Volume 4,
    Issue 1, February, Pages 22-31
    【E26】AivarsVilguts et al. (2021): «Parametric analyses and feasibility
    study of moment-resisting timber frames under service load».
    Engineering Structures, Volume 228, 1 February, 111583

    網路文獻
    【W1】維基百科。台灣的社會住宅。2019.10.20 取自
    https://zh.wikipedia.org/wiki/%E5%8F%B0%E7%81%A3%E7%9A%84%E7
    %A4%BE%E6%9C%83%E4%BD%8F%E5%AE%85
    【W2】行政院農業委員會林務局。蕭祺暉。人工疏伐監測營造森林永續環境。
    104 年5 月(第275 期)。2021.05.12 取自
    https://www.coa.gov.tw/ws.php?id=2502871
    【W3】國家林產技術平台。2021.05.12 取自https://www.cwcbawqac.
    org.tw/forest-tech/index.php?action=resources-detail&id=70
    【W4】日本木材技術手冊(2013)。2021.05.12 取自
    https://www.j-wood.org/market_china/tebiki/v01.pdf
    【W5】台灣木材網。2021.05.12 取自
    https://www.taiwanwood.org.tw/2018/12/26/37/
    【W6】D. Fell(2013): Wood and Human Health. Retrieved 2020.06.23
    fromhttps://fpinnovations.ca/MediaCentre/Brochures/Wood_Human_He
    alth_final-single.pdf
    【W7】Construction Underway on World’s Tallest Timber
    Tower .Retrieved 2021.05.13 from
    https://raic.org/sites/raic.org/files/civicrm/persist/contribute/files/bulletin/2016/m
    arch/brock_eng.pdf
    【W8】Best Wood SCHNEIDER. Retrieved 2020.06.23 from
    https://www.schneider-holz.com/best-wood-schneider-en.html
    【W9】HYBRID Build Solutions. Retrieved 2020.06.23 from
    http://www.glulamsolutions.co.uk/clt-cross-laminated-timber/hybrid-structures/
    【W10】安心樂租網。2019.11.14 取自
    https://www.rent.gov.taipei/
    【W10】長榮海運股份有限公。2021.11.28 取自
    https://www.evergreen-marine.com/tw/

    QR CODE