簡易檢索 / 詳目顯示

研究生: 陳柏任
Bo-Ren Chen
論文名稱: 在藍牙低功耗中設計具適應性與高效節能之設備發現
On Designing Adaptive and Energy Efficient Device Discovery in Bluetooth Low Energy
指導教授: 鄭欣明
Shin-Ming Cheng
口試委員: 陳雅淑
Ya-Shu Chen
查士朝
Shi-Cho Cha
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 35
中文關鍵詞: 物聯網設備發現能源效率藍牙低功耗
外文關鍵詞: Device Discovery, TI CC2540
相關次數: 點閱:191下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 作為一種短距離的點對點無線通信技術,藍牙低功耗(BLE)受到廣泛關注。透過設備發現發現鄰近裝置,可支持各種物聯網(IoT)的應用。顯然,設備發現有著至關重要的作用,在物聯網設備中發現的設備數量與能源消耗之間的權衡。本文提出的智能設備發現機制,sDiscovery,自適應地調整掃描窗口,掃描間隔根據環境的現狀。特別是,我們利用發現是否有重複的裝置,以確保周圍環境的狀態變化頻繁。可對物聯網設備的掃描窗口和掃描間隔進行相應的調整。模擬結果表示,sDiscovery在省電方面優於現有的解決方案和常規的機制。此外,通過TI CC2540開發板實現協議的原型,並利用實驗驗證了模擬模型的正確性。我們的模擬結果表示,與常規的發現機制相比,sDiscovery可以節省約百分之74的功耗並僅遺失少數的發現數量。


    As a short-range and peer-to-peer wireless communication technology, Bluetooth low energy (BLE) receives lots of attentions recently. By enabling discover devices in the proximity, BLE could support various mobile Internet of Things (IoT) applications. Obviously, device discovery plays an essential role on the trade-off between number of devices discovered and energy consumption for a mobile IoT device. This paper subsequently proposes a smart device discovery mechanism, sDiscovery, to adaptively adjust scan window and scan interval according to the current status of the environment. In particular, we leverage the number of peers discovered more than once to make sure if the status of environment changes frequently. The scan window and scan interval for a mobile IoT device could be regulated accordingly. The simulation results show that sDiscovery outperforms the existing solution and conventional BLE mechanism from the perspective of power saving. Moreover, we verify the correctness of simulation model through experiments in TI CC2540 development board, where a prototype of the protocol is implemented. Our simulation results demonstrate that compared with conventional BLE discovery scheme, sDiscovery can save around 74 percent energy by paying the price of discovering a fewer number of peers.

    Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Background - Bluetooth Low Energy Protocol Stack . . . . . . . . . . . 9 2.1.1 BLE Protocol Stack Overview . . . . . . . . . . . . . . . . . . . 9 2.1.2 Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.3 Link Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 Non-Connected Communication . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 ADV process duration . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Power Model - Scan Event . . . . . . . . . . . . . . . . . . . . . . . . . 16 4 Proposed Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.1 Verification of the simulation . . . . . . . . . . . . . . . . . . . . . . . . 24 5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2.1 Power Saving . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5.2.2 Coupling Phenomena . . . . . . . . . . . . . . . . . . . . . . . . 26 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    [1] P. Kindt, D. Yunge, R. Diemer, and S. Chakraborty, “Precise energy modeling for the Bluetooth Low Energy protocol,” arXiv preprint arXiv:1403.2919, 2014.

    [2] S. I. G. Bluetooth, “Bluetooth specification version 4.0,” Jun. 2010.

    [3] J. Liu, C. Chen, and Y. Ma, “Modeling neighbor discovery in Bluetooth Low Energy networks,” IEEE Commun. Lett., vol. 16, no. 9, pp. 1439–1441, Sept. 2012.

    [4] J. Liu, C. Chen, and Y. Ma, “Modeling and performance analysis of device discovery in Bluetooth Low Energy networks,”
    in Proc. IEEE GLOBECOM 2012, Dec. 2012, pp. 1538–1543.

    [5] K. Cho, W. Park, M. Hong, G. Park, W. Cho, J. Seo, and K. Han, “Analysis of latency performance of Bluetooth low energy (BLE) networks,” Sensors, vol. 15, no. 1, pp. 59–78, 2014.

    [6] W. S. Jeon, M. H. Dwijaksara, and D. G. Jeong, “Performance analysis of neighbor discovery process in Bluetooth Low Energy Networks,” IEEE Trans. Veh. Technol., 2016 accepted.

    [7] M. Varsamou and T. Antonakopoulos, “A Bluetooth smart analyzer in iBeacon networks,” in Proc. IEEE ICCE 2014, Sept 2014, pp. 288–292.

    [8] TI CC2540 - Texas Instruments. [Online]. Available: http://www.ti.com/product/CC2540

    [9] C.Gomez,J.Oller,andJ.Paradells,“OverviewandevaluationofBluetoothLowEnergy: Anemerging low-power wireless technology,” Sensors, vol. 12, no. 9, pp. 11734–11753, 2012.

    [10] J. Liu, C. Chen, Y. Ma, and Y. Xu, “Adaptive device discovery in Bluetooth Low Energy networks,”
    in Proc. IEEE VTC Spring 2013, Jun. 2013, pp. 1–5.

    [11] J. Liu, C. Chen, Y. Ma, and Y. Xu, “EnergyanalysisofdevicediscoveryforBluetoothLowEnergy,” inProc.IEEEVTCFall2013, Sept. 2013, pp. 1–5. Sept. 2013, pp. 1–5.

    [12] K. Mikhaylov, “Accelerated Connection Establishment (ACE) mechanism for Bluetooth Low En- ergy,” in Proc. IEEE PIMRC 2014, Sept. 2014, pp. 1264–1268.

    [13] K. Mikhaylov and T. Hänninen, “Mechanisms for improving throughput and energy efficiency of Bluetooth Low Energy for multi node environment,” Journal of High Speed Networks, vol. 21, no. 3, pp. 165–180, 2015.

    [14] K. Mikhaylov and J. Tervonen, “Multihop data transfer service for Bluetooth Low Energy,” in Proc. ITST 2013, Nov. 2013, pp. 319–324.

    [15] J. Nieminen, C. Gomez, M. Isomaki, T. Savolainen, B. Patil, Z. Shelby, M. Xi, and J. Oller, “Net- working solutions for connecting Bluetooth Low Energy enabled machines to the Internet of Things,” IEEE Network, vol. 28, no. 6, pp. 83–90, Nov. 2014.

    [16] J. Nieminen, C. Gomez, M. Isomaki, T. Savolainen, B. Patil, Z. Shelby, M. Xi, and J. Oller, “Transmission of ipv6 packets over Bluetooth Low Energy draft-ietf-6lowpan-btle-12,” 2013.

    [17] H. Wang, M. Xi, J. Liu, and C. Chen, “Transmitting ipv6 packets over Bluetooth Low Energy based
    on BlueZ,” in Proc. ICACT 2013, Jan. 2013, pp. 72–77.

    [18] B.Han, J.Li, andA.Srinivasan, “On the energy efficiency of device discovery in mobile opportunistic networks: A systematic approach,” IEEE j. Mobile Computing, vol. 14, no. 4, pp. 786–799, Apr. 2015.

    [19] P. Kindt, D. Yunge, R. Diemer, and S. Chakraborty. (2014) C-implementation of the ble energy model. [Online]. Available: http://www.rcs.ei.tum.de/en/research/wireless-sensor-networks/bleemod

    無法下載圖示 全文公開日期 2021/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE