簡易檢索 / 詳目顯示

研究生: 尤春凡
Bayu - Rezki Pratama
論文名稱: 以基因演算法求解作業排程於TFT-LCD組立廠
Operation Scheduling in TFT-LCD Cell Process Using Genetic Algorithm
指導教授: 林希偉
Shi-Woei Lin
陳建良
James C. Chen
口試委員: 陳子立
Tzu-Li Chen
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 62
中文關鍵詞: 排序TFT-LCD組立廠產能規劃系統多目標遺傳算法實驗設計
外文關鍵詞: scheduling, TFT-LCD cell, capacity planning system, multi-objective genetic algorithm, experimental design
相關次數: 點閱:328下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • TFT-LCD組立廠特徵在於作為平行機調度問題,順序相關的設置時間、多步驟的生產、多目標於彩色濾光片和陣列廠之間的限制。在拉式生產和產能有限的假設基礎上,本研究應用產能規劃系統(CPS)於TFT-LCD組立製程作業調度架構上。提出了一種改進的多目標遺傳算法(MOGA)生產訂單調度決策,同時最大限度地減少機器的工作量平衡,完工時間和延遲。改進的MOGA認為優先規則,從簡單的調度規則作為基礎,產生的解決方案。設置精細完整的MOGA調節參數使用兩因子實驗設計和計算實驗進行評估的意義和計算的穩健性與其他方法進行比較,並採用全因子實驗設計的初步實驗。所有的性能指標都轉化成一個單一的指數進行比較(總體性能)。在總體性能方面,改進的MOGA性能明顯優於其他方法,因此可以合理的知道改進的MOGA是較優的排序方法。


    TFT-LCD cell process is characterized as a parallel-machine scheduling problem with multiple products, sequence-dependent setup times, multi-step production, multi-objective, and matching constraints between color filter and array line. On the basis of pull philosophy and the assumption of finite capacity, this research applies the capacity planning system (CPS) framework to deal with the operation scheduling in TFT-LCD cell process environment. A modified multi-objective genetic algorithm (MOGA) is proposed to produce the order dispatching decision which simultaneously minimizes the machine workload balance, makespan, and lateness. Modified MOGA considers the priority rule from the simple dispatching rule as a prior knowledge when generates the solution sets. The preliminary experiment is applied to set the fine MOGA tuning parameter using two-level factorial experimental design and the computational experiment is conducted to evaluate the significance and the robustness of proposed algorithm performance compared with other competitive algorithms using full factorial experimental design. All of the performance indices are transformed into a single index (overall performance) by using desirability function. With respect to overall performance, modified MOGA performances are significantly better than other competitive algorithms, thus modified MOGA can be reasonably concluded to achieve steadily better solution.

    ABSTRACT i ACKNOWLEDGEMENT ii CONTENT iii LIST OF FIGURES v LIST OF TABLES vi Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Objectives 4 1.3 Justifications 4 1.4 Organization of Thesis 5 Chapter 2 Literature Review 6 2.1 Current Research about Scheduling in TFT-LCD Industry 6 2.2 Dispatching rule 7 2.2.1 Heuristic method 7 2.2.3 Meta-heuristic method 8 Chapter 3 Problem Definition and Methodology 10 3.1 Overview of TFT-LCD Cell Process 10 3.2 Methodology of Capacity Planning System (CPS) using modified MOGA 11 3.2.1 Capacity Planning System (CPS) 15 3.2.2 Modified MOGA 22 Chapter 4 Result and Analysis 30 4.1 Simulation Environment 30 4.2 MOGA Tuning Parameters 31 4.3 Analysis of Experimental Design 34 4.3.1 Experimental Design Factors and Responses 34 4.3.2 Result and Discussion 38 4.4 Performance Analysis of Original MOGA and Modified MOGA 43 4.4.1 Performance Analysis of Significant Responses 43 4.4.2 Performance Analysis of Significant Factors 47 Chapter 5 Conclusion and Future Research 50 5.1 Conclusion 50 5.2 Suggestion 50 Bibliography 52 Appendix 55 Appendix 1 - MOGA parameter setting 55 Appendix 2 - Paired T result 57

    [1] Z.Y. Lee, C.C. Pai, Operation analysis and performance assessment for TFT-LCD manufacturers using improved DEA, Expert Systems with Applications, 38 (2011) 4014-4024.
    [2] T. Huang, J. Yang, 2013 TFT LCD industry and market outlook, in: DIGITIME Research, 2012.
    [3] T.L. Chen, Y.Y. Chen, H.C. Lu, A capacity allocation and expansion model for TFT-LCD multi-site manufacturing, J Intell Manuf, (2012) 1-26.
    [4] T.L. Chen, J.T. Lin, S.C. Fang, A shadow-price based heuristic for capacity planning of TFT-LCD manufacturing, Journal of Industrial and Management Optimization, 6 (2010) 209-239.
    [5] J.T. Lin, I.H. Hong, C.H. Wu, K.S. Wang, A model for batch available-to-promise in order fulfillment processes for TFT-LCD production chains, Computers & Industrial Engineering, 59 (2010) 720-729.
    [6] S.-T. Wang, M.-H. Li, W.-T. Lin, An analysis of TFT-LCD industry success factors by integrating FDAHP and gray sequencing, African Journal of Business Management, 5 (2011) 11011-11021.
    [7] H.J. Shin, Y.H. Kang, A rework-based dispatching algorithm for module process in TFT-LCD manufacture, International Journal of Production Research, 48 (2008) 915-931.
    [8] J.T. Lin, F.K. Wang, C.C. Peng, Lot release times and dispatching rule for a TFT-LCD cell process, Robotics and Computer-Integrated Manufacturing, 24 (2008) 228-238.
    [9] B. Chen, T.I. Matis, A flexible dispatching rule for minimizing tardiness in job shop scheduling, International Journal of Production Economics, 141 (2013) 360-365.
    [10] R.M. Dabbas, H.N. Chen, J.W. Fowler, D. Shunk, A combined dispatching criteria approach to scheduling semiconductor manufacturing systems, Computers & Industrial Engineering, 39 (2001) 307-324.
    [11] C.D. Geiger, R. Uzsoy, H. Aytug, Rapid Modeling and Discovery of Priority Dispatching Rules: An Autonomous Learning Approach, J Sched, 9 (2006) 7-34.
    [12] J.C. Chen, C.W. Chen, C.J. Lin, H. Rau, Capacity planning with capability for multiple semiconductor manufacturing fabs, Computers & Industrial Engineering, 48 (2005) 709-732.
    [13] J.C. Chen, Y.C. Fan, C.W. Chen, Capacity requirements planning for twin Fabs of wafer fabrication, International Journal of Production Research, 47 (2009) 4473-4496.
    [14] J.C. Chen, L.-H. Su, C.-J. Sun, M.-F. Hsu, Infinite capacity planning for IC packaging plants, International Journal of Production Research, 48 (2009) 5729-5748.
    [15] M. Pinedo, K. Hadavi, Scheduling: Theory, Algorithms and Systems Development, in: W. Gaul, A. Bachem, W. Habenicht, W. Runge, W. Stahl (Eds.) Operations Research Proceedings 1991, Springer Berlin Heidelberg, 1992, pp. 35-42.
    [16] H.H. Wu, C.P. Chen, C.H. Tsai, C.J. Yang, Simulation and scheduling implementation study of TFT-LCD Cell plants using Drum–Buffer–Rope system, Expert Systems with Applications, 37 (2010) 8127-8133.
    [17] Y.C. Chang, P.S. Chen, P.C. Chen, A machine setup model for TFT-LCD cell back-end process, in: Industrial Engineering and Engineering Management, 2009. IEEM 2009. IEEE International Conference on, 2009, pp. 1709-1713.
    [18] B. Jeong, S.W. Kim, Y.J. Lee, An assembly scheduler for TFT LCD manufacturing, Computers & Industrial Engineering, 41 (2001) 37-58.
    [19] H.J. Shin, V.J. Leon, Scheduling with product family set-up times: an application in TFT LCD manufacturing, International Journal of Production Research, 42 (2004) 4235-4248.
    [20] J.H. Blackstone, D.T. Phillips, G.L. Hogg, A state-of-the-art survey of dispatching rules for manufacturing job shop operations, International Journal of Production Research, 20 (1982) 27-45.
    [21] M.C. Wu, T.U. Hung, A Hit-Rate Based Dispatching Rule For Semiconductor Manufacturing, International Journal of Industrial Engineering, 15 (2008).
    [22] S.H. Chen, C.K. Chang, C.L. Kuo, Optimal Scheduling in Color Filter Manufacturing, Journal of the Chinese Institute of Industrial Engineers, 22 (2005) 301-308.
    [23] T. Yang, Y. Kuo, C. Cho, A genetic algorithms simulation approach for the multi-attribute combinatorial dispatching decision problem, European Journal of Operational Research, 176 (2007) 1859-1873.
    [24] J.C. Tay, N.B. Ho, Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems, Computers & Industrial Engineering, 54 (2008) 453-473.
    [25] C.Y. Cheng, T.L. Chen, L.C. Wang, Y.Y. Chen, A genetic algorithm for the multi-stage and parallel-machine scheduling problem with job splitting – A case study for the solar cell industry, International Journal of Production Research, (2013) 1-23.
    [26] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, Evolutionary Computation, IEEE Transactions on, 6 (2002) 182-197.
    [27] F.K. Wang, K.K. Chang, Adaptive neuro-fuzzy inference system for combined forecasts in a panel manufacturer, Expert Systems with Applications, 37 (2010) 8119-8126.
    [28] Z.Y. Lee, E.L. Kung, Integrating Grey Relational Analysis and Multi-Dimensional Scaling for TFT-LCD Competitiveness, International Proceedings of Economics Development & Research, 43 (2012) 81.
    [29] Y.Y. Chen, J.T. Lin, T.L. Chen, A two-phase dynamic dispatching approach to semiconductor wafer testing, Robotics and Computer-Integrated Manufacturing, 27 (2011) 889-901.

    QR CODE