簡易檢索 / 詳目顯示

研究生: Michael Poernomo
Michael Poernomo
論文名稱: Design of Two-Stage Authentication to Achieve a Lightweight Precision Time Protocol for IoT
Design of Two-Stage Authentication to Achieve a Lightweight Precision Time Protocol for IoT
指導教授: 馮輝文
Huei-Wen Ferng
口試委員: 鄭瑞光
林嘉慶
張宏慶
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 36
中文關鍵詞: IEEE 1588物聯網時間同步數位簽章
外文關鍵詞: IEEE 1588, Internet of things, clock synchronization, digital signature
相關次數: 點閱:258下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 物聯網(IoT)的當前增強標準化了網絡中設備或計算機精準同步的方法。IEEE
    1588 中描述了階層式主從架構的精確時間協議(Precision Time Protocol, PTP)
    來滿足更高精度時間同步的必要性。為達更高精確度,安全及資源議題昇起,為
    了能好好處理這些議題,本論文提出一使用數位簽章及多項式之輕量認證式精準
    時間協議。對於所提出的方案將經由SimPy 模擬器進行評估,並且模擬結果顯
    示,所提出的方案在時間和存儲複雜度方面優於文獻中密切相關的方案。


    The current enhancements in the Internet of Things (IoT) standardize a method to
    precisely synchronize computers or devices over the network. The precision time
    protocol (PTP) described in IEEE 1588 in a hierarchical masterslave
    architecture
    meets the necessity for higher accurate time synchronization. For achieving
    higher accuracy, security and resource issues arise. To mitigate these issues, a
    lightweight authenticated PTP using the digital signature and polynomials is proposed
    in this thesis. The proposed scheme is evaluated through the SimPy simulator
    and the simulation results show that the proposed scheme outperforms the
    closely related schemes in the literature in terms of time and storage complexity.

    Recommendation Form Letter . . . . . . . . . . . . . . . . . . . . . . . . . i Committee Qualification Form Letter . . . . . . . . . . . . . . . . . . . . . . ii Chinses Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii English Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Table of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction to PTP . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 The organization of this Thesis . . . . . . . . . . . . . . . . . . . . 3 Chapter 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Clock Synchronization Models . . . . . . . . . . . . . . . . . . . . 4 2.2 BlockchainBased PTP . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 STETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Chapter 3 The Proposed Scheme . . . . . . . . . . . . . . . . . . . . . 11 3.1 Design of the TwoStage Security Scheme . . . . . . . . . . . . . 11 3.2 Deployment and Initialization . . . . . . . . . . . . . . . . . . . . . 12 3.3 Synchronization Message Generation . . . . . . . . . . . . . . . . 13 3.4 Time Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5 Security Performance . . . . . . . . . . . . . . . . . . . . . . . . . 16 Chapter 4 Numerical Results and Discussions . . . . . . . . . . . . . . 17 4.1 Simulation Parameters and Scenarios . . . . . . . . . . . . . . . . 17 4.2 Simulation Results and Discussions . . . . . . . . . . . . . . . . . 18 4.2.1 Selection Attack . . . . . . . . . . . . . . . . . . . . . . . . 18 4.2.2 Node Capture Attack . . . . . . . . . . . . . . . . . . . . . . 18 4.2.3 Convergence Time . . . . . . . . . . . . . . . . . . . . . . . 19 4.2.4 Analysis of Time Complexity . . . . . . . . . . . . . . . . . 20 4.2.5 Analysis of Space Complexity . . . . . . . . . . . . . . . . . 23 Chapter 5 Conclusion and Future Work . . . . . . . . . . . . . . . . . 25 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    [1] A. AlFuqaha,
    M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet
    of things: A survey on enabling technologies, protocols, and applications,”
    IEEE Communications Surveys & Tutorials, vol. 17, pp. 2347–2376,
    June 2015.
    [2] K. Fan, S. Wang, Y. Ren, H. Li, and Y. Yang, “Medblock: Efficient and secure
    medical data sharing via blockchain,” Journal of Medical Systems, vol. 42,
    p. 136, June 2018.
    [3] “C37.2382017 ieee standard profile for use of ieee 1588 precision time
    protocol in power system applications.”
    [4] D. Mills, “Internet time synchronization: The network time protocol,” 1989.
    [5] J. Tsang and K. Beznosov, “A security analysis of the precise time protocol
    (short paper),” Information and Communications Security Lecture Notes in
    Computer Science, pp. 50–59, 2006.
    [6] J. Elson, L. Girod, and D. Estrin, “Finegrained
    network time synchronization
    using reference broadcasts,” ACM SIGOPS Operating Systems Review,
    vol. 36, pp. 147–163, December 2002.
    [7] G. Cena, S. Scanzio, A. Valenzano, and C. Zunino, “The referencebroadcast
    infrastructure synchronization protocol,” in Proc, IEEE International Conference
    on Emerging Technologies & Factory Automation (ETFA), 2012.
    [8] M. Sichitiu and C. Veerarittiphan, “Simple, accurate time synchronization for
    wireless sensor networks,” in Proc, IEEE Wireless Communications and Networking
    (WCNC), 2003.
    [9] S. Jain and Y. Sharma, “Optimal performance reference broadcast synchronization
    (oprbs) for time synchronization in wireless sensor networks,” in
    Proc, International Conference on Computer, Communication and Electrical
    Technology (ICCCET), 2011.
    [10] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timingsync
    protocol for sensor
    networks,” pp. 138–149, 2003.
    [11] J. V. Greunen and J. Rabaey, “Lightweight time synchronization for sensor
    networks,” in Proc, ACM International Conference on Wireless Sensor Networks
    and Applications (WSNA), 2003.
    [12] L.M.
    He, “Time synchronization based on spanning tree for wireless sensor
    networks,” in Proc, International Conference on Wireless Communications,
    Networking and Mobile Computing, 2008.
    [13] T. Qiu, L. Chi, W. Guo, and Y. Zhang, “STETS: A novel energyefficient
    time
    synchronization scheme based on embedded networking devices,”

    QR CODE